
3/26/24, 8:03 PM Pull Image from DockerHub Private Registry using Helm in Kubernetes

https://www.devopshint.com/pull-image-from-dockerhub-private-registry/ 1/22

Pull Image from DockerHub Private Registry
using Helm in Kubernetes

Updated: January 10, 2024 by Prasad Hole

In this article we are going to cover Pull Image from DockerHub

Private Registry using Helm in Kubernetes.

Containerization has become a cornerstone in modern application

development and deployment. Docker containers, for instance,

encapsulate an application and its dependencies, ensuring

consistency across various environments. To manage these

containers efficiently, many organizations use container

orchestration tools like Kubernetes, and to simplify deployment,

Helm charts provide a powerful abstraction.

In this article, we’ll explore how to pull images from a private

registry using YAML and Helm. Private registries are essential for

secure and controlled access to container images, and configuring

Helm charts to fetch images from these private repositories is a

common requirement.

Menu

DevOpsHint

https://www.devopshint.com/author/prasad-devops/
https://www.devopshint.com/

3/26/24, 8:03 PM Pull Image from DockerHub Private Registry using Helm in Kubernetes

https://www.devopshint.com/pull-image-from-dockerhub-private-registry/ 2/22

Prerequisites

AWS Account with Ubuntu 22.04 LTS EC2 Instance

A private container registry in DockerHub

Minikube and kubectl, Helm Installed

Install Minikube and kubectl by following the official

documentation for your operating system:

Minikube Installation Guide

Install Minikube on Ubuntu 22.04 LTS

Helm Installed:

Install Helm by following the official documentation:

Helm Installation Guide

Push an Image in private registry

First create an image then push it in private Docker hub registry.

Here are some basic components to build a Docker image.

Dockerfile

Table of Contents

https://www.fosstechnix.com/how-to-install-argocd-on-minikube/
https://www.fosstechnix.com/how-to-install-argocd-on-minikube/
https://www.fosstechnix.com/what-is-helm-why-we-need-helm-helm-charts/

3/26/24, 8:03 PM Pull Image from DockerHub Private Registry using Helm in Kubernetes

https://www.devopshint.com/pull-image-from-dockerhub-private-registry/ 3/22

Application Code

Dependencies and Configuration Files

Step #1:Dockerizing a Node.js web app

First create a folder named express_app and move inside the folder

using the following commands.

mkdir express_app
cd express_app

Step #2:Create the Node.js app

Then create a file named package.json which consist all files and

dependencies required to describe the app.

nano package.json

add the following content into it.

{
 "name": "docker-example",
 "version": "1.0.0",
 "description": "",
 "main": "app.js",
 "scripts": {
 "start": "nodemon app.js",
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "",
 "license": "ISC",
 "dependencies": {
 "express": "^4.17.1",
 "nodemon": "^2.0.12"

3/26/24, 8:03 PM Pull Image from DockerHub Private Registry using Helm in Kubernetes

https://www.devopshint.com/pull-image-from-dockerhub-private-registry/ 4/22

 }
}

save the modification using ctrl+x, shift+y and Enter.

install npm (Node Package Manager)

sudo apt install npm

Now, initialize the node project using the following command

npm init

Output:

3/26/24, 8:03 PM Pull Image from DockerHub Private Registry using Helm in Kubernetes

https://www.devopshint.com/pull-image-from-dockerhub-private-registry/ 5/22

The package.json file will be added. It holds information about our

projects like scripts, files, dependencies, and versions. It will ask

for name, version and many other things you can just set it to

default by pressing Enter.

Then install the Express library and add it to the package.json file

npm install --save express

3/26/24, 8:03 PM Pull Image from DockerHub Private Registry using Helm in Kubernetes

https://www.devopshint.com/pull-image-from-dockerhub-private-registry/ 6/22

Output:

Now install a tool called nodemon. It will automatically restarts

the node application when it detects any changes.

npm install --save nodemon

Step #3:Create app.js file for Nodejs app

Then, create a app.js file named app.js that defines a web app using

the Express.js framework.

3/26/24, 8:03 PM Pull Image from DockerHub Private Registry using Helm in Kubernetes

https://www.devopshint.com/pull-image-from-dockerhub-private-registry/ 7/22

nano app.js

add the following content into it.

// import and create an express app
const express = require('express');
const app = express()

// message as response
msg = "Hello world! this is nodejs in a docker container.."
// create an end point of the api
app.get('/', (req, res) => res.send(msg));

// now run the application and start listening
// on port 3000
app.listen(3000, () => {
 console.log("app running on port 3000...");
})

save the modification using ctrl+x, shift+y and Enter.

After this we can run the application on our local system.

npm run start

3/26/24, 8:03 PM Pull Image from DockerHub Private Registry using Helm in Kubernetes

https://www.devopshint.com/pull-image-from-dockerhub-private-registry/ 8/22

Step #4:Create a Dockerfile For Nodejs app

Now to Dockerize the application we will create an image and for

that we will create a Dockerfile which holds the information about

image that will run the application.

nano Dockerfile

FROM node:latest
WORKDIR /app
COPY package.json /app
RUN npm install
COPY . /app
CMD ["npm", "start"]
EXPOSE 3000

3/26/24, 8:03 PM Pull Image from DockerHub Private Registry using Helm in Kubernetes

https://www.devopshint.com/pull-image-from-dockerhub-private-registry/ 9/22

save the modification using ctrl+x, shift+y and Enter.

Step #5:Building an Image for Nodejs app

Now with the help of Dockerfile build an image using following

command.

docker build -t nodeapp .

3/26/24, 8:03 PM Pull Image from DockerHub Private Registry using Helm in Kubernetes

https://www.devopshint.com/pull-image-from-dockerhub-private-registry/ 10/22

confirm the image is created by running following command.

docker images

3/26/24, 8:03 PM Pull Image from DockerHub Private Registry using Helm in Kubernetes

https://www.devopshint.com/pull-image-from-dockerhub-private-registry/ 11/22

Now run the image as a container using following command

docker run -p 3000:3000 nodeapp

Step #6:Push the image in private registry

Login to the docker

docker login

Output:

it will ask for username and password

then tag the image using following command.

docker tag nodeapp:latest prasadhole/nodeapp:latest

3/26/24, 8:03 PM Pull Image from DockerHub Private Registry using Helm in Kubernetes

https://www.devopshint.com/pull-image-from-dockerhub-private-registry/ 12/22

then push the image to your private registry using following

command

docker push prasadhole/nodeapp:latest

now image is pushed to the private registry named nodeapp.

Pull the image from private registry using helm file

Step #1:Create a secret for docker-registry

Create a secret Docker registry

kubectl create secret docker-registry nodeapp \
 --docker-server=https://index.docker.io/v1/ \
 --docker-username=prasadhole \
 --docker-password=Prasad@2002

Step #2:Create a helm chart for Nodejs app

Create a helm chart

3/26/24, 8:03 PM Pull Image from DockerHub Private Registry using Helm in Kubernetes

https://www.devopshint.com/pull-image-from-dockerhub-private-registry/ 13/22

helm create nodejs

If your Docker image is hosted on Docker Hub and your Docker Hub

credentials are needed to pull the image during deployments in

Kubernetes, you can create a secret with your Docker Hub

credentials using the following kubectl create secret docker-registry

command.

now open the directory

cd nodejs

then open the values.yaml file and modify it as shown below

nano values.yaml

Default values for nodejs.
This is a YAML-formatted file.
Declare variables to be passed into your templates.

replicaCount: 1

image:
 repository: prasadhole/nodeapp
 pullPolicy: IfNotPresent
 # Overrides the image tag whose default is the chart appVersion.
 tag: "latest"

imagePullSecrets:
 - name: nodeapp
nameOverride: ""
fullnameOverride: ""

3/26/24, 8:03 PM Pull Image from DockerHub Private Registry using Helm in Kubernetes

https://www.devopshint.com/pull-image-from-dockerhub-private-registry/ 14/22

serviceAccount:
 # Specifies whether a service account should be created
 create: true
 # Automatically mount a ServiceAccount's API credentials?
 automount: true
 # Annotations to add to the service account
 annotations: {}
 # The name of the service account to use.
 # If not set and create is true, a name is generated using the fullname
template
 name: ""

podAnnotations: {}
podLabels: {}

podSecurityContext: {}
 # fsGroup: 2000

securityContext: {}
 # capabilities:
 # drop:
 # - ALL
 # readOnlyRootFilesystem: true
 # runAsNonRoot: true
 # runAsUser: 1000

service:
 type: NodePort
 port: 3000

ingress:
 enabled: false
 className: ""
 annotations: {}
 # kubernetes.io/ingress.class: nginx
 # kubernetes.io/tls-acme: "true"
 hosts:
 - host: chart-example.local
 paths:
 - path: /
 pathType: ImplementationSpecific
 tls: []
 # - secretName: chart-example-tls
 # hosts:
 # - chart-example.local

resources: {}
 # We usually recommend not to specify default resources and to leave
this as a conscious
 # choice for the user. This also increases chances charts run on
environments with little
 # resources, such as Minikube. If you do want to specify resources,
uncomment the following
 # lines, adjust them as necessary, and remove the curly braces after
'resources:'.
 # limits:
 # cpu: 100m

3/26/24, 8:03 PM Pull Image from DockerHub Private Registry using Helm in Kubernetes

https://www.devopshint.com/pull-image-from-dockerhub-private-registry/ 15/22

 # memory: 128Mi
 # requests:
 # cpu: 100m
 # memory: 128Mi

autoscaling:
 enabled: false
 minReplicas: 1
 maxReplicas: 100
 targetCPUUtilizationPercentage: 80
 # targetMemoryUtilizationPercentage: 80

Additional volumes on the output Deployment definition.
volumes: []
- name: foo
secret:
secretName: mysecret
optional: false

Additional volumeMounts on the output Deployment definition.
volumeMounts: []
- name: foo
mountPath: "/etc/foo"
readOnly: true

nodeSelector: {}

tolerations: []

affinity: {}

3/26/24, 8:03 PM Pull Image from DockerHub Private Registry using Helm in Kubernetes

https://www.devopshint.com/pull-image-from-dockerhub-private-registry/ 16/22

save the modification using ctrl+x, shift+y and Enter.

exit the directory

cd

Step #3:Install the chart to Pull the image

now install the chart

3/26/24, 8:03 PM Pull Image from DockerHub Private Registry using Helm in Kubernetes

https://www.devopshint.com/pull-image-from-dockerhub-private-registry/ 17/22

helm install mynodeapp nodejs

run the kubectl command check the pod is running or not

kubectl get pods

run the following command to check if image is pulled or not.

kubectl pod describe mynodeapp-nodejs-b74b7db44-c6rsr

Step #4:Run the Nodejs app on browser

For checking services, run following command

kubectl get svc

3/26/24, 8:03 PM Pull Image from DockerHub Private Registry using Helm in Kubernetes

https://www.devopshint.com/pull-image-from-dockerhub-private-registry/ 18/22

For accessing the Nodejs application on browser use following

command.

kubectl port-forward --address 0.0.0.0 svc/mynodeapp-nodejs 3000:3000

This command is used to forward traffic from port 3000 on your

local machine to port 3000 on the specified service mynodeapp-nodejs.

This can be useful for accessing a service running in your

Kubernetes cluster from your local machine.

To access the application on Browser write the ip address:port

number in url.

ip address is the public ip address of your Minikube EC2 instance

created on AWS and port number which is 3000 which we have used

in forwarding nodejs pod.

” Hello world! this is nodejs in a docker container.. ” message will be

displayed as follows.

3/26/24, 8:03 PM Pull Image from DockerHub Private Registry using Helm in Kubernetes

https://www.devopshint.com/pull-image-from-dockerhub-private-registry/ 19/22

Conclusion:

Pulling images from a private registry using YAML and Helm involves

creating a Kubernetes Secret for authentication and updating Helm

chart values. This ensures that your Kubernetes deployments can

securely access container images from private repositories,

providing a robust and scalable solution for containerized

applications.

Related Articles:

How to Use Environment Variables in Helm Chart

Leave a Comment

About Prasad Hole

https://www.devopshint.com/how-to-use-environment-variables-in-helm-chart/

3/26/24, 8:03 PM Pull Image from DockerHub Private Registry using Helm in Kubernetes

https://www.devopshint.com/pull-image-from-dockerhub-private-registry/ 20/22

Name *

Email *

Website

Save my name, email, and website in this browser for the next

time I comment.

Post Comment

This site uses Akismet to reduce spam. Learn how your comment

data is processed.

Search

Monitor Docker Containers with Prometheus and Grafana

Cloudways Autonomous-Kubernetes Hosting for High Traffic Site

4 Types of Elastic Load Balancer in AWS

Deploy Application to AWS Elastic Beanstalk

Pull Image from DockerHub Private Registry using Helm in Kubernetes

https://akismet.com/privacy/
https://akismet.com/privacy/
https://www.devopshint.com/monitor-docker-containers-with-prometheus/
https://www.devopshint.com/cloudways-autonomous-kubernetes-hosting/
https://www.devopshint.com/4-types-of-elastic-load-balancer-in-aws/
https://www.devopshint.com/deploy-application-to-aws-elastic-beanstalk/
https://www.devopshint.com/pull-image-from-dockerhub-private-registry/

3/26/24, 8:03 PM Pull Image from DockerHub Private Registry using Helm in Kubernetes

https://www.devopshint.com/pull-image-from-dockerhub-private-registry/ 21/22

About DevOpsHint

DevOpsHint is a Community site where you can find about How to Guides, Articles and

Troubleshooting Tips for Various current DevOps,GitOps,DevSecOps,SRE Tools and

Resources.

DevOps Resources

Consulting and Support

Site Links

Terraform Cloud Sentinel Policy and Remote Backends

How to Create Amazon ECS Cluster

Free DevOps Resources

Terraform with AWS Consulting and Job Support

Prometheus Consulting and Job Support

About Us

Contact Us

Privacy Policy

https://www.devopshint.com/terraform-cloud-sentinel-policy/
https://www.devopshint.com/how-to-create-amazon-ecs-cluster/
https://www.devopshint.com/pull-image-from-dockerhub-private-registry/
https://www.devopshint.com/pull-image-from-dockerhub-private-registry/
https://www.devopshint.com/pull-image-from-dockerhub-private-registry/
https://www.devopshint.com/category/resources/
https://www.devopshint.com/terraform-with-aws-consulting-and-job-support
https://www.devopshint.com/prometheus-consulting-and-job-support/
https://www.devopshint.com/about-us/
https://www.devopshint.com/contact-us/
https://www.devopshint.com/privacy-policy/

3/26/24, 8:03 PM Pull Image from DockerHub Private Registry using Helm in Kubernetes

https://www.devopshint.com/pull-image-from-dockerhub-private-registry/ 22/22

© 2024 DevOps Hint. All Rights Reserved - Designed by Navin Rao

Terms and Conditions

https://navinrao.com/
https://www.devopshint.com/terms-and-conditions/

