
3/28/24, 3:05 PM Use of Flow Control Statements in Helm with Example

https://www.devopshint.com/flow-control-statements-in-helm-with-example/ 1/22

Use of Flow Control Statements in Helm with
Example

Updated: December 18, 2023 by Prasad Hole

In this article, we are going to cover Use of Flow Control

Statements in Helm with Example | flow control structures of helm

if, with, and range, in Helm templates.. We’ll focus on its templating

system, using simple ‘if,’ ‘with,’ and ‘range’ statements to make

Kubernetes setups flexible. These constructs allow for dynamic and

conditional customization of Kubernetes resources.

Prerequisites

AWS Account with Ubuntu 22.04 LTS EC2 Instance

Minikube and kubectl Installed

Install Minikube and kubectl by following the official

documentation for your operating system:

Menu

DevOpsHint

Table of Contents

https://www.devopshint.com/author/prasad-devops/
https://www.devopshint.com/

3/28/24, 3:05 PM Use of Flow Control Statements in Helm with Example

https://www.devopshint.com/flow-control-statements-in-helm-with-example/ 2/22

Minikube Installation Guide

Install Minikube on Ubuntu 22.04 LTS

Helm Installed:

Install Helm by following the official documentation:

Helm Installation Guide

Use of if Statement in Helm with Example

The if statement in Helm’s templating language allows for

conditional logic. It evaluates a condition and includes or excludes

specific sections of YAML based on the result. The condition is

typically expressed using comparison or equality operators. It

checks a condition and executes a block of code if the condition is

true.

The if statement can be chained with else if and else for

handling multiple conditions.

Common comparison operators include eq, ne, lt, le, gt, ge.

Syntax:

{{- if condition }}
 # Code to execute if the condition is true
{{- else if anotherCondition }}
 # Code to execute if another condition is true
{{- else }}

https://www.fosstechnix.com/how-to-install-argocd-on-minikube/
https://www.fosstechnix.com/how-to-install-argocd-on-minikube/
https://www.fosstechnix.com/what-is-helm-why-we-need-helm-helm-charts/

3/28/24, 3:05 PM Use of Flow Control Statements in Helm with Example

https://www.devopshint.com/flow-control-statements-in-helm-with-example/ 3/22

 # Code to execute if none of the conditions are true
{{- end }}

‘{{-‘ and ‘-}}‘ are used for trimming whitespaces.

if is followed by the condition to be evaluated.

else if and else are optional, providing additional branches for

different conditions.

A condition is evaluated as false if the value is:

a boolean false

a numeric zero

an empty string

a nil (empty or null)

an empty collection (map, slice, tuple, dict, array)

Example:

first we will create a chart named ‘helloworld’.

helm create helloworld

then open the directory in which values.yaml file is present.

cd helloworld

now lets modify values file. use the following command to modify

in it.

3/28/24, 3:05 PM Use of Flow Control Statements in Helm with Example

https://www.devopshint.com/flow-control-statements-in-helm-with-example/ 4/22

nano values.yaml

modify it as shown below.

repicaCount: 3

envVars:
 enabled: false # Change to true to enable envVars
 valueOne: "first_value"
 valueTwo: "second_value"

to save the modification press ctrl+x, shift+y and enter.

then we will modify the deployment.yaml file,

first open the directory in which the file present,

cd templates

then use following command to modify in deployment.yaml

3/28/24, 3:05 PM Use of Flow Control Statements in Helm with Example

https://www.devopshint.com/flow-control-statements-in-helm-with-example/ 5/22

nano deployment.yaml

now modify the part as shown in below image. Here env section is

added using if statement inside the container section.

{{- if .Values.envVars.enabled }}
env:
 - name: ENV_VAR_ONE
 value: {{ .Values.envVars.valueOne | quote }}
 - name: ENV_VAR_TWO
 value: {{ .Values.envVars.valueTwo | quote }}
{{- else }}
env:
 - name: ENV_VAR_DEFAULT
 value: "default_value"
{{- end }}

to save the modification press ctrl+x, shift+y and enter.

In this example:

3/28/24, 3:05 PM Use of Flow Control Statements in Helm with Example

https://www.devopshint.com/flow-control-statements-in-helm-with-example/ 6/22

The .Values.envVars.enabled checks if envVars is enabled in the

Helm values file.

If it’s set to true, it includes the env section with the specified

environment variables.

If it’s set to false or not defined, it includes a default

environment variable (ENV_VAR_DEFAULT) with a default value.

now exit the directory using following command.

cd

run the template command to see if modifications are done.

helm template helloworld

Output:

Source: helloworld/templates/deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
name: release-name-helloworld
labels:
helm.sh/chart: helloworld-0.1.0
app.kubernetes.io/name: helloworld
app.kubernetes.io/instance: release-name
app.kubernetes.io/version: "1.16.0"
app.kubernetes.io/managed-by: Helm
spec:
replicas: 3
selector:
matchLabels:
app.kubernetes.io/name: helloworld
app.kubernetes.io/instance: release-name
template:
metadata:

3/28/24, 3:05 PM Use of Flow Control Statements in Helm with Example

https://www.devopshint.com/flow-control-statements-in-helm-with-example/ 7/22

labels:
helm.sh/chart: helloworld-0.1.0
app.kubernetes.io/name: helloworld
app.kubernetes.io/instance: release-name
app.kubernetes.io/version: "1.16.0"
app.kubernetes.io/managed-by: Helm
spec:
serviceAccountName: release-name-helloworld
securityContext:
{}
containers:
- name: helloworld
securityContext:
{}
image: "nginx:1.16.0"
imagePullPolicy: IfNotPresent
ports:
- name: http
containerPort: 80
protocol: TCP
env:
- name: ENV_VAR_DEFAULT
value: "default_value"
livenessProbe:
httpGet:
path: /
port: http
readinessProbe:
httpGet:
path: /
port: http
resources:
{}

Since, envVars is set to enabled: false so instead of first_value and

second_value, default value is printed.

Now lets change the enabled: false to true. Follow the same

procedure to modify values.yaml file and set the envVars to

enabled:true

envVars:
 enabled: true # Change to true to enable envVars
 valueOne: "first_value"
 valueTwo: "second_value"

3/28/24, 3:05 PM Use of Flow Control Statements in Helm with Example

https://www.devopshint.com/flow-control-statements-in-helm-with-example/ 8/22

Now run the helm template helloworld command again.

Output:

as you can see in env section printed the name and value of first

and second variable.

Use of with Statement in Helm with example:

The with statement simplifies referencing nested structures in Helm

templates. It sets a context for a block of code, reducing

redundancy and improving code readability. This is particularly

handy when dealing with complex configurations and nested values

within the Helm chart.

The with statement sets the context for the block, allowing

direct access to the fields within .Values.

3/28/24, 3:05 PM Use of Flow Control Statements in Helm with Example

https://www.devopshint.com/flow-control-statements-in-helm-with-example/ 9/22

Useful when dealing with nested structures to avoid repetitive

references.

The . (dot) is a special identifier in Helm that represents the

current context or scope. When used with with, it allows you to

reference values from the current context within the new

scope.

Syntax:

{{- with context }}
 # Code to execute within the specified context
{{- end }}

‘{{-‘ and ‘-}}‘ trim whitespaces.

with is followed by the context or variable, setting the scope

for the enclosed block of code.

Example:

Follow the same procedure mentioned above till modifying

values.yaml.

add the envVariables part in values.yaml file.

service:
 type: ClusterIP
 port: 80

envVariables:
 - name: DATABASE_URL
 value: "your-database-url"
 - name: API_KEY

3/28/24, 3:05 PM Use of Flow Control Statements in Helm with Example

https://www.devopshint.com/flow-control-statements-in-helm-with-example/ 10/22

 value: "your-api-key"
 - name: DEBUG_MODE
 value: "true"

ingress:
 enabled: false
 className: ""
 annotations: {}
 # kubernetes.io/ingress.class: nginx
 # kubernetes.io/tls-acme: "true"
 hosts:
 - host: chart-example.local
 paths:
 - path: /
 pathType: ImplementationSpecific

to save the modification press ctrl+x, shift+y and enter.

then open the templates directory and modify the deployment.yaml

file

cd templates

nano deployment.yaml

We will use ‘with’ at container block after port part.

 containers:
 - name: {{ .Chart.Name }}
 securityContext:
 {{- toYaml .Values.securityContext | nindent 12 }}
 image: "{{ .Values.image.repository }}:{{ .Values.image.tag |
default .Chart.AppVersion }}"
 imagePullPolicy: {{ .Values.image.pullPolicy }}
 ports:
 - name: http
 containerPort: {{ .Values.service.port }}
 protocol: TCP
 {{- with .Values.envVariables }}
 env:
 {{- range . }}
 - name: {{ .name }}

3/28/24, 3:05 PM Use of Flow Control Statements in Helm with Example

https://www.devopshint.com/flow-control-statements-in-helm-with-example/ 11/22

 value: {{ .value | quote }}
 {{- end }}
 {{- end }}
 livenessProbe:
 httpGet:
 path: /
 port: http

to save the modification press ctrl+x, shift+y and enter.

exit the directories.

cd

then run the helm template command

helm template helloworld

Output:

Source: helloworld/templates/deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
 name: release-name-helloworld
 labels:
 helm.sh/chart: helloworld-0.1.0
 app.kubernetes.io/name: helloworld
 app.kubernetes.io/instance: release-name
 app.kubernetes.io/version: "1.16.0"
 app.kubernetes.io/managed-by: Helm
spec:
 replicas: 1
 selector:
 matchLabels:
 app.kubernetes.io/name: helloworld
 app.kubernetes.io/instance: release-name
 template:
 metadata:
 labels:
 helm.sh/chart: helloworld-0.1.0
 app.kubernetes.io/name: helloworld

3/28/24, 3:05 PM Use of Flow Control Statements in Helm with Example

https://www.devopshint.com/flow-control-statements-in-helm-with-example/ 12/22

 app.kubernetes.io/instance: release-name
 app.kubernetes.io/version: "1.16.0"
 app.kubernetes.io/managed-by: Helm
 spec:
 serviceAccountName: release-name-helloworld
 securityContext:
 {}
 containers:
 - name: helloworld
 securityContext:
 {}
 image: "nginx:1.16.0"
 imagePullPolicy: IfNotPresent
 ports:
 - name: http
 containerPort: 80
 protocol: TCP
 env:
 - name: DATABASE_URL
 value: "your-database-url"
 - name: API_KEY
 value: "your-api-key"
 - name: DEBUG_MODE
 value: "true"
 livenessProbe:
 httpGet:
 path: /
 port: http
 readinessProbe:
 httpGet:
 path: /
 port: http
 resources:
 {}

To align your Helm values file with the modified deployment.yaml using

the with statement, you need to structure your values file

accordingly.

Use of range Statement with example:

The range statement enables iteration over lists or maps in Helm

templates. It’s a powerful tool for dynamically generating

Kubernetes resources based on a list of values. This feature is

3/28/24, 3:05 PM Use of Flow Control Statements in Helm with Example

https://www.devopshint.com/flow-control-statements-in-helm-with-example/ 13/22

crucial for creating scalable charts that can adapt to varying

numbers of components or services.

The range statement iterates over the list or map provided.

It is valuable when generating resources dynamically based

on input values.

Syntax:

{{- range iterable }}
 # Code to execute for each item in the iterable
{{- end }}

‘{{-‘ and ‘-}}‘ trim whitespaces.

range is followed by the iterable (e.g., a list or map).

The block of code inside the range is executed for each item in

the iterable.

Example:

Follow the same steps as if statement until modifying values.yaml

file

Modify the values file using following command.

nano values.yaml

add the envVariable section in it.

3/28/24, 3:05 PM Use of Flow Control Statements in Helm with Example

https://www.devopshint.com/flow-control-statements-in-helm-with-example/ 14/22

envVariables:
 - name: DB_HOST
 value: "localhost"
 - name: DB_PORT
 value: "5432"
 - name: DB_KEY
 value: "secret_key"

to save the modification press ctrl+x, shift+y and enter.

Now open the templates directory

cd templates

Then modify the deployment.yaml file.

nano deployment.yaml

add env section in container section as shown below.

3/28/24, 3:05 PM Use of Flow Control Statements in Helm with Example

https://www.devopshint.com/flow-control-statements-in-helm-with-example/ 15/22

env:
 {{- range .Values.envVariables }}
 - name: {{ .name }}
 value: {{ .value | quote }}
 {{- end }}

to save the modification press ctrl+x, shift+y and enter.

exit the directories.

cd

Run the helm template command.

helm template helloworld

Output:

3/28/24, 3:05 PM Use of Flow Control Statements in Helm with Example

https://www.devopshint.com/flow-control-statements-in-helm-with-example/ 16/22

3/28/24, 3:05 PM Use of Flow Control Statements in Helm with Example

https://www.devopshint.com/flow-control-statements-in-helm-with-example/ 17/22

You can see the env section in the output is printed.

The range statement is used to iterate over the list of

environment variables defined in .Values.envVariables.

For each variable in the list, a new block is created in the

spec.template.spec.containers.env section of the Deployment.

The template within the range block accesses properties of

each environment variable such as name and value.

Importance Flow Control Statements in Helm

The importance of flow controls (if, with, and range) in Helm cannot

be overstated. Here are key reasons why they are crucial in Helm:

1. Dynamic Configurations:

if statements enable conditional adjustments, allowing

dynamic configurations based on different environments.

2. Reduced Redundancy with with:

The with statement simplifies referencing nested structures,

reducing redundancy and enhancing code readability.

3. Iterative Resource Generation with range:

3/28/24, 3:05 PM Use of Flow Control Statements in Helm with Example

https://www.devopshint.com/flow-control-statements-in-helm-with-example/ 18/22

range statements facilitate the dynamic creation of

resources, essential for scalable and adaptable Helm

charts.

4. Adaptability and Readability:

Helm flow controls enhance adaptability by adjusting

configurations, promoting modularity, and making charts

more readable in diverse deployment scenarios.

Best Practices of Flow Control Statements in Helm

Here are the main best practices for using flow controls in Helm

charts:

1. Whitespace Trimming:

Use ‘{{-‘ and ‘-}}‘ to trim unnecessary whitespaces, ensuring

cleaner YAML output.

2. Consistent Indentation:

Maintain consistent indentation for a well-organized and

readable code structure.

3. Commenting:

Add comments to explain the purpose of flow controls and

any complex logic for better understanding.

4. Use Helper Functions for Complex Logic:

Consider moving intricate or reusable logic to helper

functions in helpers.tpl to keep main templates focused.

5. Avoid Nested Flow Controls When Possible:

3/28/24, 3:05 PM Use of Flow Control Statements in Helm with Example

https://www.devopshint.com/flow-control-statements-in-helm-with-example/ 19/22

Limit the depth of nested flow controls to maintain

simplicity and ease of management.

6. Error Handling:

Use {{- fail "message" }} in if statements for explicit error

handling to avoid silent failures.

7. Group Related Logic:

Group related logic together to improve clarity and

separate different concerns into distinct sections.

8. Avoid Hardcoding Values:

Refrain from hardcoding values directly within templates;

rely on values from values.yaml or external configurations.

9. Testing and Validation:

Implement thorough testing of Helm charts, including

scenarios involving different flow control paths.

10. Documentation:

Maintain documentation outlining the purpose and usage

of flow controls within Helm charts.

These practices collectively contribute to creating maintainable,

readable, and error-resistant Helm charts with effective use of flow

controls.

Conclusion:

In conclusion, Use of Flow Control Statements in Helm with

Example | using Helm charts with flow controls like if, with, and range

3/28/24, 3:05 PM Use of Flow Control Statements in Helm with Example

https://www.devopshint.com/flow-control-statements-in-helm-with-example/ 20/22

involves keeping things tidy, using helper functions smartly, and

simplifying without making it too complicated. It’s about

organizing, testing, and documenting for practical use in different

situations. It ensures that your Helm charts are well-structured,

adaptable, and straightforward for seamless use in diverse

environments.

Related Articles:

How to use helm lint, helm –debug –dry-run and helm template

Leave a Comment

Name *

About Prasad Hole

https://www.devopshint.com/helm-lint-helm-debug-dry-run-and-helm-template/

3/28/24, 3:05 PM Use of Flow Control Statements in Helm with Example

https://www.devopshint.com/flow-control-statements-in-helm-with-example/ 21/22

Email *

Website

Save my name, email, and website in this browser for the next

time I comment.

Post Comment

This site uses Akismet to reduce spam. Learn how your comment

data is processed.

Search

Top 5 Beaches Near Pune to visit within 200 km

Monitor Docker Containers with Prometheus and Grafana

Cloudways Autonomous-Kubernetes Hosting for High Traffic Site

4 Types of Elastic Load Balancer in AWS

Deploy Application to AWS Elastic Beanstalk

Pull Image from DockerHub Private Registry using Helm in Kubernetes

Terraform Cloud Sentinel Policy and Remote Backends

https://akismet.com/privacy/
https://akismet.com/privacy/
https://www.devopshint.com/top-5-beaches-near-pune-to-visit-within-200-km/
https://www.devopshint.com/monitor-docker-containers-with-prometheus/
https://www.devopshint.com/cloudways-autonomous-kubernetes-hosting/
https://www.devopshint.com/4-types-of-elastic-load-balancer-in-aws/
https://www.devopshint.com/deploy-application-to-aws-elastic-beanstalk/
https://www.devopshint.com/pull-image-from-dockerhub-private-registry/
https://www.devopshint.com/terraform-cloud-sentinel-policy/

3/28/24, 3:05 PM Use of Flow Control Statements in Helm with Example

https://www.devopshint.com/flow-control-statements-in-helm-with-example/ 22/22

About DevOpsHint

DevOpsHint is a Community site where you can find about How to Guides, Articles and

Troubleshooting Tips for Various current DevOps,GitOps,DevSecOps,SRE Tools and

Resources.

DevOps Resources

Consulting and Support

Site Links

© 2024 DevOps Hint. All Rights Reserved - Designed by Navin Rao

Free DevOps Resources

Terraform with AWS Consulting and Job Support

Prometheus Consulting and Job Support

About Us

Contact Us

Privacy Policy

Terms and Conditions

https://navinrao.com/
https://www.devopshint.com/flow-control-statements-in-helm-with-example/
https://www.devopshint.com/flow-control-statements-in-helm-with-example/
https://www.devopshint.com/flow-control-statements-in-helm-with-example/
https://www.devopshint.com/category/resources/
https://www.devopshint.com/terraform-with-aws-consulting-and-job-support
https://www.devopshint.com/prometheus-consulting-and-job-support/
https://www.devopshint.com/about-us/
https://www.devopshint.com/contact-us/
https://www.devopshint.com/privacy-policy/
https://www.devopshint.com/terms-and-conditions/

