DevOps

© DevOps Shack

The Ultimate Corporate Pipeline With
GitHub Actions

Deplo yT
Kubernstes Deployed Website

=
o

& |
. 2
Y docker

‘ SonarQUbe } Docker Push 9 ﬁ
Code Quality Check

Do k Imag

D(]\;JD L
Requirement to Ma ven GltHl.lb d k
change OC Qr
background color Build/Package

Application

PHASE-1 | Setup Repo

Fork the Repo

1. Navigate to the Repository: Go to the repository you want to fork. This can
be done through the platform's search feature or by directly accessing the
repository's URL.

2. Locate the Fork Button: Look for the "Fork" button on the repository's page.
This button is usually located in the top-right corner of the page. Click on it.

3. Choose the Destination: When you click on the "Fork" button, you'll be
prompted to choose where you want to fork the repository. This is typically
your personal account or an organization you belong to. Select the
appropriate destination.

4. Wait for the Fork to Complete: The platform will start the forking process,
creating a copy of the repository under your account. Depending on the size
of the repository, this process may take a few moments.

<« C = github.comfjaiswaladi246/Boardgame

= O jaiswaladi246 / Boardgame

<» Code

@ issues 1% Pullrequests (8 Actions

@ Boardgame Pubiic

¥ main - ¥ 2 Branches © 0 Tags

@ jJaiswaladi2d6 Update cicdyml
.github/workflows
mvn/wrapper
SIC
3 .gitignore
D Dockerfile
@ rReaDMEmd
0O deployment-service.yam|
O mvnw

D mvnw.cmd

B Projects @ Security [+ Insights
QG file
Update cicd.yml
Ad urce code by C ps shack
Ad ource code by DevOps shack
Added source code by DevOps shack

deployment-service.yam

ided source code by DevOps shac

fed source code by DevOps shac

Q Type |/ to search

@ Settings

t

57 Pin & Unwatch 1 «

29-Thoursaga 1) 45 Commits

> + - (O] 1

71 b Starred 21 -

Abm 8

< O <+ B

) defription, website, or topics provided.

cgpme

ity

ars

vilitching

Orks

Releases

No releases published

Create a new release

Packages

ages published

Publish your first package

PHASE-2 | Infra Setup

Setting Up Kubernetes Cluster on AWS EC2 Instances

1. Creating VMs:

e Login to the AWS Management Console.
e Navigate to the EC2 dashboard.
e Click on "Launch Instance".

e Choose an Amazon Machine Image (AMI), select the appropriate instance type
(t2.medium), configure instance details, add storage (20GB), and configure security
groups to allow SSH access.

e Repeat the above steps to create the second VM.
2. Connecting to VMs via SSH(using Mobaexterm or any other Terminal):

e Use an SSH client like mobaxterm (for Windows) or Terminal (for macOS/Linux) to
connect to the VMs using their public IP addresses and SSH key pair.

3. Updating Packages:

sudo apt update && sudo apt upgrade -y
4. Create and Execute Script on Both Master & Worker VM:

Script (setup.sh):
sudo apt install docker.io -y
sudo chmod 666 /var/run/docker.sock

sudo apt-get install -y apt-transport-https ca-certificates curl gnupg
sudo mkdir -p -m 755 /etc/apt/keyrings

curl -fsSL https://pkgs.k8s.io/core:/stable:/v1.28/deb/Release.key | sudo
gpg —--dearmor -o /etc/apt/keyrings/kubernetes-apt-keyring.gpg

echo 'deb [signed-by=/etc/apt/keyrings/kubernetes-apt-keyring.gpg]
https://pkgs.k8s.io/core:/stable:/v1.28/deb/ /' | sudo tee
/etc/apt/sources.list.d/kubernetes.list

sudo apt update

sudo apt install -y kubeadm=1.28.1-1.1 kubelet=1.28.1-1.1 kubectl=1.28.1-
1.1

Execution:

sudo chmod +x setup.sh
sudo ./setup.sh

5. On Master Node:

Script (init_master.sh):
sudo kubeadm init --pod-network-cidr=10.244.0.0/16

mkdir -p S$HOME/.kube

sudo cp -1 /etc/kubernetes/admin.conf $HOME/.kube/config

sudo chown $(id -u) :$(id -g) SHOME/.kube/config

kubectl apply —-f https://docs.projectcalico.org/manifests/calico.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes/ingress-
nginx/controller-v0.49.0/deploy/static/provider/baremetal /deploy.yaml

Execution:

sudo chmod +x init master.sh
sudo ./init master.sh

6. On Worker Node:

e Copy the kubeadm join command provided in the output of kubeadm init from
the master node.

e Execute the command on the worker node as the root user.
7. Verification:

¢ On the master node, run:

kubectl get nodes
kubectl get pods --all-namespaces

e Ensure all nodes are in the rReady state and pods are running.

Create Service Account, Role & Assign that role,
And create a secret for Service Account and
genrate a Token

Creating Service Account

apiVersion: vl
kind: ServiceAccount
metadata:
name: jenkins
namespace: webapps

Create Role

apiVersion: rbac.authorization.k8s.io/vl
kind: Role

metadata:

name: app-role

namespace: webapps
rules:

- apiGroups:

- apps
- autoscaling
- batch
- extensions
- policy
- rbac.authorization.k8s.io
resources:
- pods
- componentstatuses
- configmaps
- daemonsets
- deployments
- events
- endpoints
- horizontalpodautoscalers
- ingress
- Jjobs
- limitranges
- namespaces
- nodes
- pods
- persistentvolumes
- persistentvolumeclaims
- resourcequotas
- replicasets
- replicationcontrollers
- serviceaccounts
- services
verbs: ["get", "list", "watch", "create", "update", "patch", "delete"]

Bind the role to service account

apiVersion: rbac.authorization.k8s.io/vl
kind: RoleBinding
metadata:
name: app-rolebinding
namespace: webapps
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: Role
name: app-role
subjects:
- namespace: webapps
kind: ServiceAccount
name: Jjenkins

Generate token using service account in the namespace

Create Token

SetUp SonarQube

sudo apt-get update
sudo apt-get install -y ca-certificates curl
sudo install -m 0755 -d /etc/apt/keyrings

sudo curl -fsSL https://download.docker.com/linux/ubuntu/gpg -o
/etc/apt/keyrings/docker.asc

sudo chmod a+r /etc/apt/keyrings/docker.asc

echo "deb [arch=$ (dpkg --print-architecture) signed-
by=/etc/apt/keyrings/docker.asc] https://download.docker.com/linux/ubuntu \
$(. /etc/os-release && echo "$VERSION CODENAME") stable" | \

sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

sudo apt-get update

sudo apt-get install -y docker-ce docker-ce-cli containerd.io docker-
buildx-plugin docker-compose-plugin

Save this script in a file, for example, install docker.sh, and make it executable

using:
chmod +x install docker.sh

Then, you can run the script using:

./install docker.sh

https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/#:~:text=To%20create%20a%20non%2Dexpiring,with%20that%20generated%20token%20data.

Create Sonarqube Docker container

To run SonarQube in a Docker container with the provided command, you can follow
these steps:

1. Open your terminal or command prompt.

2. Run the following command:

docker run -d --name sonar -p 9000:9000 sonarqube:lts-community

This command will download the sonarqube:lts-community Docker image from
Docker Hub if it's not already available locally. Then, it will create a container named
"sonar” from this image, running it in detached mode (-4 flag) and mapping port
9000 on the host machine to port 9000 in the container (-p 9000:9000 flag).

3. Access SonarQube by opening a web browser and navigating to http://vmIP:9000.

This will start the SonarQube server, and you should be able to access it using the
provided URL. If you're running Docker on a remote server or a different port,
replace 1ocalhost with the appropriate hostname or IP address and adjust the port
accordingly.

Setting Up GitHub Actions Self-hosted
Runner on VM

1. Provisioning VM:

e Log in to your cloud provider (e.g., AWS, Azure, GCP).
« Navigate to the dashboard or console for managing virtual machines.
e Click on "Launch Instance" or similar to create a new virtual machine.

e Choose an appropriate instance type (t2.large), configure instance details (8GB
RAM, 20GB storage), networking, and security settings.

o Complete the setup and wait for the VM to be provisioned.
2. Accessing VM:

e Once the VM is provisioned, obtain its public IP address or DNS name.
o Use SSH (for Linux) or RDP (for Windows) to connect to the VM.

. Setting Up Self-hosted Runner:
o Open a terminal or command prompt on the VM.
. Registering Runner:

e Go to your GitHub repository where you want to set up the self-hosted
runner.

« Navigate to the "Settings" tab.
. Accessing Runner Configuration:

e On the left sidebar, click on "Actions".
e Click on "Runners".

. Adding New Runner:
e Click on "New self-hosted runner".
. Selecting Machine Type:

o Choose the appropriate machine type (Linux, macOS, Windows) based on your
VM's operating system.

. Executing Commands:

e Follow the instructions provided by GitHub to download and configure the
runner. These typically involve running a set of commands.

. Starting the Runner:

o After configuring the runner, start it by running the command provided.

PHASE-3 | CICD

Java CI Pipeline with GitHub Actions

This document outlines the steps to create a continuous integration (Cl) pipeline
using GitHub Actions for a Java project built with Maven. The pipeline includes steps
for building the project, running security scans, performing code quality analysis with
SonarQube, building and scanning Docker images, and deploying to Kubernetes.
Secrets are used to securely store sensitive information such as authentication tokens
and configuration files.

Pipeline Overview:
1. Java Build and Package:

o Sets up JDK 17 using Temurin distribution.
o Builds the Java project using Maven.
o Uploads the generated JAR artifact as a GitHub Action artifact.

2. Security Scans:

o Performs file system scan using Trivy.
o Runs SonarQube scan for code quality analysis.

3. Docker Build and Scan:

o Sets up QEMU and Docker Buildx.

o Builds Docker image for the Java application.

o Scans Docker image using Trivy.

o Logs in to Docker Hub using provided credentials.
o Pushes the Docker image to Docker Hub.

4. Kubernetes Deployment:

o Uses Kubectl Action to interact with Kubernetes cluster.

o Applies deployment and service configuration from deployment-
service.yaml file to deploy the application to Kubernetes
namespace webapps.

Pipeline Configuration:

name: CICD By DevOps Shack
on:
push:
branches: ["main"]
jobs:
build:

runs-on: self-hosted

steps:

uses: actions/checkout@v3
name: Set up JDK 17
uses: actions/setup-java@v3

with:
java-version: '17'
distribution: 'temurin'

cache: maven
name: Build with Maven
run: mvn package

uses: actions/upload-artifact@v4
with:

name: my-artifact

path: target/*.jar

name: Trivy FS Scan
run: |
trivy fs --format table -o trivy-fs-report.html

name: SonarQube Scan

uses: sonarsource/sonarqube-scan-action@master
env:

SONAR_ TOKEN: S{A{ secrets.SONAR TOKEN 1}

SONAR HOST URL: S${{ secrets.SONAR HOST URL }}

name: Install jg
run: sudo apt-get update && sudo apt-get install -y jg

name: SonarQube Quality Gate check

id: sonarqube-quality-gate-check

uses: sonarsource/sonarqube-quality-gate-action@master
timeout-minutes: 5

env:

SONAR TOKEN: ${{ secrets.SONAR TOKEN }}

SONAR HOST URL: S${{ secrets.SONAR HOST URL }}

name: Set up QEMU
uses: docker/setup-gemu-action@v3

name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3

name: Build Docker Image
run: |
docker build -t adijaiswal/boardgame:latest

- name: Trivy Image Scan
run: |
trivy image --format table -o trivy-image-report.html
adijaiswal/board:latest

- name: Login to Docker Hub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB USERNAME }}
password: ${{ secrets.DOCKERHUB TOKEN }}

- name: Push Docker Image
run: |
docker push adijaiswal/boardgame:latest

- name: Kubectl Action
uses: tale/kubectl-action@vl
with:
base64-kube-config: ${{ secrets.KUBE CONFIG }}

- run: |
kubectl apply -f deployment-service.yaml -n webapps

kubectl get svc -n webapps

Secrets Configuration: Ensure that the following secrets are configured in your
GitHub repository:

o sonar TOKEN: Token for authenticating SonarQube scan.

e sonar HosT URL: URL of your SonarQube instance.

e DOCKERHUB USERNAME: Username for Docker Hub authentication.

e DOCKERHUB_ TOKEN: Token for Docker Hub authentication.

e KUBE_CONFIG: Base64 encoded Kubernetes configuration file (kubeconfig) for
accessing the Kubernetes cluster.

PHASE-4 | Monitoring

Downloading Prometheus Components and Grafana

Below are the steps to download Prometheus components (Node Exporter, Blackbox
Exporter, and Prometheus itself) from the official Prometheus website and Grafana
from the Grafana website:

1. Downloading Node Exporter:

e Go to the Prometheus download page: Prometheus Download Page.

e Scroll down to the "Node Exporter" section.
e Choose the appropriate version for your operating system.
e Click on the download link to download the Node Exporter binary.

2. Downloading Blackbox Exporter:

e Go to the Prometheus download page: Prometheus Download Page.

e Scroll down to the "Blackbox Exporter" section.
e Choose the appropriate version for your operating system.
e Click on the download link to download the Blackbox Exporter binary.

3. Downloading Prometheus:

e Go to the Prometheus download page: Prometheus Download Page.

e Scroll down to the "Prometheus" section.
e Choose the appropriate version for your operating system.
e Click on the download link to download the Prometheus binary.

4. Downloading Grafana:

e Go to the Grafana download page: Grafana Download Page.

e Choose the appropriate version for your operating system.
e Click on the download link to download the Grafana binary.

https://prometheus.io/download/
https://prometheus.io/download/
https://prometheus.io/download/
https://grafana.com/grafana/download

Documentation:

You can find additional information and documentation for each component from
the following links:

e Node Exporter Documentation

e Blackbox Exporter Documentation

e Prometheus Documentation

e Grafana Documentation

For Proper command Please refer the video from Time stamp
01:06:00 https://youtu.be/FTrTFOLbdm4

https://prometheus.io/docs/guides/node-exporter/
https://prometheus.io/docs/guides/blackbox-exporter/
https://prometheus.io/docs/prometheus/latest/getting_started/
https://grafana.com/docs/grafana/latest/
https://youtu.be/FTrTFOLbdm4

