

Scrapy

i

About the Tutorial

Scrapy is a fast, open-source web crawling framework written in Python, used to extract

the data from the web page with the help of selectors based on XPath.

Audience

This tutorial is designed for software programmers who need to learn Scrapy web crawler

from scratch.

Prerequisites

You should have a basic understanding of Computer Programming terminologies and

Python. A basic understanding of XPath is a plus.

Copyright & Disclaimer

 Copyright 2017 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent
of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or
in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Scrapy

ii

Table of Contents

About the Tutorial .. i
Audience ... i
Prerequisites ... i
Copyright & Disclaimer ... i
Table of Contents .. ii

SCRAPY BASIC CONCEPTS .. 1

1. Scrapy ─ Overview .. 2

2. Scrapy ─ Environment ... 3
Windows .. 3
Anaconda ... 3
Ubuntu 9.10 or Above ... 4
Archlinux .. 4
Mac OS X.. 4

3. Scrapy ─ Command Line Tools ... 6
Configuration Settings ... 6
Default Structure Scrapy Project ... 6
Using Scrapy Tool .. 7
Custom Project Commands ... 8

4. Scrapy ─ Spiders .. 9
Spider Arguments .. 10
Generic Spiders .. 11
CrawlSpider ... 11
XMLFeedSpider .. 12
CSVFeedSpider .. 13
SitemapSpider ... 14

5. Scrapy ─ Selectors ... 17
Constructing Selectors ... 17
Using Selectors .. 18
Nesting Selectors ... 19
Selectors Using Regular Expressions ... 19
Using Relative XPaths .. 19
Using EXSLT Extensions ... 20
XPath Tips .. 20
SelectorList Objects ... 23

6. Scrapy ─ Items ... 26
Declaring Items .. 26
Item Fields ... 26
Items .. 26
Extending Items ... 28

7. Scrapy ─ Item Loaders ... 30
Declaring Item Loaders .. 30
Using Item Loaders to Populate Items .. 30

Scrapy

iii

Input and Output Processors ... 31
Declaring Input and Output Processors ... 32
Item Loader Context .. 33
ItemLoader Objects ... 34
Nested Loaders .. 37
Reusing and Extending Item Loaders .. 38
Available Built-in Processors ... 38

8. Scrapy ─ Shell .. 41
Configuring the Shell ... 41
Launching the Shell .. 41
Using the Shell ... 41
Invoking the Shell from Spiders to Inspect Responses .. 44

9. Scrapy ─ Item Pipeline ... 46
Syntax .. 46
Example ... 47

10. Scrapy ─ Feed Exports ... 50
Serialization Formats ... 50
Storage Backends .. 51
Storage URI Parameters .. 51
Settings .. 51

11. Scrapy ─ Requests & Responses .. 53
Request Objects ... 53
Request.meta Special Keys .. 56
Request Subclasses .. 57

12. Scrapy ─ Link Extractors .. 62
Built-in Link Extractor's Reference .. 62

13. Scrapy ─ Settings ... 64
Designating the Settings .. 64
Populating the Settings ... 64
Access Settings .. 65
Other Settings .. 74

14. Scrapy ─ Exceptions .. 81

SCRAPY LIVE PROJECT ... 83

15. Scrapy ─ Create a Project .. 84

16. Scrapy ─ Define an Item .. 85

17. Scrapy ─ First Spider .. 86

18. Scrapy ─ Crawling .. 87

19. Scrapy ─ Extracting Items .. 88
Using Selectors in the Shell ... 88
Extracting the Data .. 90

Scrapy

iv

20. Scrapy ─ Using an Item .. 91

21. Scrapy ─ Following Links ... 93

22. Scrapy ─ Scraped Data... 95

SCRAPY BUILT-IN SERVICES ... 96

23. Scrapy ─ Logging ... 97
Log levels ... 97
How to Log Messages .. 97
Logging from Spiders ... 98
Logging Configuration ... 99

24. Scrapy ─ Stats Collection ... 101
Common Stats Collector Uses ... 101
Available Stats Collectors .. 102

25. Scrapy ─ Sending an E-mail ... 103
MailSender Class Reference .. 103
Mail Settings .. 105

26. Scrapy ─ Telnet Console .. 106
Access Telnet Console ... 106
Variables .. 106
Examples .. 107
Telnet Console Signals ... 108
Telnet Settings ... 108

27. Scrapy ─ Web Services .. 109

Scrapy

1

Scrapy Basic Concepts

Scrapy

2

Scrapy is a fast, open-source web crawling framework written in Python, used to extract
the data from the web page with the help of selectors based on XPath.

Scrapy was first released on June 26, 2008 licensed under BSD, with a milestone 1.0

releasing in June 2015.

Why Use Scrapy?

 It is easier to build and scale large crawling projects.

 It has a built-in mechanism called Selectors, for extracting the data from websites.

 It handles the requests asynchronously and it is fast.

 It automatically adjusts crawling speed using Auto-throttling mechanism.

 Ensures developer accessibility.

Features of Scrapy

 Scrapy is an open source and free to use web crawling framework.

 Scrapy generates feed exports in formats such as JSON, CSV, and XML.

 Scrapy has built-in support for selecting and extracting data from sources either

by XPath or CSS expressions.

 Scrapy based on crawler, allows extracting data from the web pages automatically.

Advantages

 Scrapy is easily extensible, fast, and powerful.

 It is a cross-platform application framework (Windows, Linux, Mac OS and BSD).

 Scrapy requests are scheduled and processed asynchronously.

 Scrapy comes with built-in service called Scrapyd which allows to upload projects

and control spiders using JSON web service.

 It is possible to scrap any website, though that website does not have API for raw
data access.

Disadvantages

 Scrapy is only for Python 2.7. +

 Installation is different for different operating systems.

1. Scrapy ─ Overview

http://doc.scrapy.org/en/latest/topics/autothrottle.html

Scrapy

3

In this chapter, we will discuss how to install and set up Scrapy. Scrapy must be installed
with Python.

Scrapy can be installed by using pip. To install, run the following command:

pip install Scrapy

Windows

Note: Python 3 is not supported on Windows OS.

Step 1: Install Python 2.7 from Python

Set environmental variables by adding the following paths to the PATH:

C:\Python27\;C:\Python27\Scripts\;

You can check the Python version using the following command:

python --version

Step 2: Install OpenSSL.

Add C:\OpenSSL-Win32\bin in your environmental variables.

Note: OpenSSL comes preinstalled in all operating systems except Windows.

Step 3: Install Visual C++ 2008 redistributables.

Step 4: Install pywin32.

Step 5: Install pip for Python versions older than 2.7.9.

You can check the pip version using the following command:

pip --version

Step 6: To install scrapy, run the following command:

pip install Scrapy

Anaconda

If you have anaconda or miniconda installed on your machine, run the following command
to install Scrapy using conda:

conda install -c scrapinghub scrapy

Scrapinghub company supports official conda packages for Linux, Windows, and OS X.

2. Scrapy ─ Environment

https://www.python.org/downloads/
http://slproweb.com/products/Win32OpenSSL.html
http://www.microsoft.com/downloads/details.aspx?familyid=9B2DA534-3E03-4391-8A4D-074B9F2BC1BF
http://sourceforge.net/projects/pywin32/
https://pip.pypa.io/en/latest/installing/
https://docs.continuum.io/anaconda/
http://conda.pydata.org/docs/install/quick.html
https://scrapinghub.com/

Scrapy

4

Note: It is recommended to install Scrapy using the above command if you have issues
installing via pip.

Ubuntu 9.10 or Above

The latest version of Python is pre-installed on Ubuntu OS. Use the Ubuntu packages apt-

gettable provided by Scrapinghub. To use the packages:

Step 1: You need to import the GPG key used to sign Scrapy packages into APT keyring:

sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv 627220E7

Step 2: Next, use the following command to create /etc/apt/sources.list.d/scrapy.list file:

echo 'deb http://archive.scrapy.org/ubuntu scrapy main' | sudo tee
/etc/apt/sources.list.d/scrapy.list

Step 3: Update package list and install scrapy:

sudo apt-get update && sudo apt-get install scrapy

Archlinux

You can install Scrapy from AUR Scrapy package using the following command:

yaourt -S scrapy

Mac OS X

Use the following command to install Xcode command line tools:

xcode-select --install

Instead of using system Python, install a new updated version that doesn't conflict with
the rest of your system.

Step 1: Install homebrew.

Step 2: Set environmental PATH variable to specify that homebrew packages should be

used before system packages:

echo "export PATH=/usr/local/bin:/usr/local/sbin:$PATH" >> ~/.bashrc

Step 3: To make sure the changes are done, reload .bashrc using the following

command:

source ~/.bashrc

http://brew.sh/

Scrapy

5

Step 4: Next, install Python using the following command:

brew install python

Step 5: Install Scrapy using the following command:

pip install Scrapy

Scrapy

6

Description

The Scrapy command line tool is used for controlling Scrapy, which is often referred to as

'Scrapy tool'. It includes the commands for various objects with a group of arguments
and options.

Configuration Settings

Scrapy will find configuration settings in the scrapy.cfg file. Following are a few locations:

 C:\scrapy(project folder)\scrapy.cfg in the system

 ~/.config/scrapy.cfg ($XDG_CONFIG_HOME) and ~/.scrapy.cfg ($HOME) for

global settings

 You can find the scrapy.cfg inside the root of the project.

Scrapy can also be configured using the following environment variables:

 SCRAPY_SETTINGS_MODULE

 SCRAPY_PROJECT

 SCRAPY_PYTHON_SHELL

Default Structure Scrapy Project

The following structure shows the default file structure of the Scrapy project.

scrapy.cfg - Deploy the configuration file

project_name/ - Name of the project

 init.py

 items.py - It is project's items file

 pipelines.py - It is project's pipelines file

 settings.py - It is project's settings file

 spiders - It is the spiders directory

 init.py

 spider_name.py

 . . .

The scrapy.cfg file is a project root directory, which includes the project name with the
project settings. For instance:

[settings]

default = [name of the project].settings

3. Scrapy ─ Command Line Tools

Scrapy

7

[deploy]

#url = http://localhost:6800/

project = [name of the project]

Using Scrapy Tool

Scrapy tool provides some usage and available commands as follows:

Scrapy X.Y - no active project

Usage:

 scrapy [options] [arguments]

Available commands:

 crawl It puts spider (handle the URL) to work for crawling data

 fetch It fetches the response from the given URL

Creating a Project

You can use the following command to create the project in Scrapy:

scrapy startproject project_name

This will create the project called project_name directory. Next, go to the newly created
project, using the following command:

cd project_name

Controlling Projects

You can control the project and manage them using the Scrapy tool and also create the
new spider, using the following command:

scrapy genspider mydomain mydomain.com

The commands such as crawl, etc. must be used inside the Scrapy project. You will come

to know which commands must run inside the Scrapy project in the coming section.

Scrapy contains some built-in commands, which can be used for your project. To see the
list of available commands, use the following command:

scrapy -h

When you run the following command, Scrapy will display the list of available commands
as listed:

 fetch: It fetches the URL using Scrapy downloader.

Scrapy

8

 runspider: It is used to run self-contained spider without creating a project.

 settings: It specifies the project setting value.

 shell: It is an interactive scraping module for the given URL.

 startproject: It creates a new Scrapy project.

 version: It displays the Scrapy version.

 view: It fetches the URL using Scrapy downloader and show the contents in a browser.

You can have some project related commands as listed:

 crawl: It is used to crawl data using the spider.

 check: It checks the items returned by the crawled command.

 list: It displays the list of available spiders present in the project.

 edit: You can edit the spiders by using the editor.

 parse: It parses the given URL with the spider.

 bench: It is used to run quick benchmark test (Benchmark tells how many number
of pages can be crawled per minute by Scrapy).

Custom Project Commands

You can build a custom project command with COMMANDS_MODULE setting in Scrapy

project. It includes a default empty string in the setting. You can add the following custom
command:

COMMANDS_MODULE = 'mycmd.commands'

Scrapy commands can be added using the scrapy.commands section in the setup.py file

shown as follows:

from setuptools import setup, find_packages

setup(name='scrapy-module_demo',

 entry_points={

 'scrapy.commands': [

 'cmd_demo=my_module.commands:CmdDemo',

],

 },

)

The above code adds cmd_demo command in the setup.py file.

Scrapy

9

Description

Spider is a class responsible for defining how to follow the links through a website and

extract the information from the pages.

The default spiders of Scrapy are as follows:

scrapy.Spider

It is a spider from which every other spiders must inherit. It has the following class:

class scrapy.spiders.Spider

The following table shows the fields of scrapy.Spider class:

Sr.

No.
Field & Description

1
name

It is the name of your spider.

2
allowed_domains

It is a list of domains on which the spider crawls.

3

start_urls

It is a list of URLs, which will be the roots for later crawls, where the spider will

begin to crawl from.

4

custom_settings

These are the settings, when running the spider, will be overridden from project

wide configuration.

5

crawler

It is an attribute that links to Crawler object to which the spider instance is

bound.

6
settings

These are the settings for running a spider.

7
logger

It is a Python logger used to send log messages.

4. Scrapy ─ Spiders

Scrapy

10

8

from_crawler(crawler,*args,**kwargs)

It is a class method, which creates your spider. The parameters are:

 crawler: A crawler to which the spider instance will be bound.

 args(list): These arguments are passed to the method _init_().

 kwargs(dict): These keyword arguments are passed to the

method _init_().

9

start_requests()

When no particular URLs are specified and the spider is opened for scrapping,

Scrapy calls start_requests() method.

10

make_requests_from_url(url)

It is a method used to convert urls to requests.

11

parse(response)

This method processes the response and returns scrapped data following more

URLs.

12

log(message[,level,component])

It is a method that sends a log message through spiders logger.

13

closed(reason)

This method is called when the spider closes.

Spider Arguments

Spider arguments are used to specify start URLs and are passed using crawl command
with -a option, shown as follows:

scrapy crawl first_scrapy -a group = accessories

The following code demonstrates how a spider receives arguments:

import scrapy

class FirstSpider(scrapy.Spider):

 name = "first"

 def __init__(self, group=None, *args, **kwargs):

 super(FirstSpider, self).__init__(*args, **kwargs)

 self.start_urls = ["http://www.example.com/group/%s" % group]

Scrapy

11

Generic Spiders

You can use generic spiders to subclass your spiders from. Their aim is to follow all links
on the website based on certain rules to extract data from all pages.

For the examples used in the following spiders, let’s assume we have a project with the
following fields:

import scrapy

from scrapy.item import Item, Field

class First_scrapyItem(scrapy.Item):

 product_title = Field()

 product_link = Field()

 product_description = Field()

CrawlSpider

CrawlSpider defines a set of rules to follow the links and scrap more than one page. It has

the following class:

class scrapy.spiders.CrawlSpider

Following are the attributes of CrawlSpider class:

rules

It is a list of rule objects that defines how the crawler follows the link.

The following table shows the rules of CrawlSpider class:

Sr. No. Rule & Description

1
LinkExtractor

It specifies how spider follows the links and extracts the data.

2
callback

It is to be called after each page is scraped.

3
follow

It specifies whether to continue following links or not.

parse_start_url(response)

It returns either item or request object by allowing to parse initial responses.

Note: Make sure you rename parse function other than parse while writing the rules

because the parse function is used by CrawlSpider to implement its logic.

Scrapy

12

Let’s take a look at the following example, where spider starts crawling

demoexample.com's home page, collecting all pages, links, and parses with

the parse_items method:

import scrapy

from scrapy.spiders import CrawlSpider, Rule

from scrapy.linkextractors import LinkExtractor

class DemoSpider(CrawlSpider):

 name = "demo"

 allowed_domains = ["www.demoexample.com"]

 start_urls = ["http://www.demoexample.com"]

 rules = (

 Rule(LinkExtractor(allow =(), restrict_xpaths = ("//div[@class =
'next']",)), callback = "parse_item", follow = True),

)

 def parse_item(self, response):

 item = DemoItem()

 item["product_title"] = response.xpath("a/text()").extract()

 item["product_link"] = response.xpath("a/@href").extract()

 item["product_description"] =
response.xpath("div[@class='desc']/text()").extract()

 return items

XMLFeedSpider

It is the base class for spiders that scrape from XML feeds and iterates over nodes. It has
the following class:

class scrapy.spiders.XMLFeedSpider

The following table shows the class attributes used to set an iterator and a tag name:

Sr.

No.
Attribute & Description

1

iterator

It defines the iterator to be used. It can be either iternodes, html or xml. Default

is iternodes.

Scrapy

13

2
itertag

It is a string with node name to iterate.

3

namespaces

It is defined by list of (prefix, uri) tuples that automatically registers namespaces

using register_namespace() method.

4

adapt_response(response)

It receives the response and modifies the response body as soon as it arrives

from spider middleware, before spider starts parsing it.

5

parse_node(response,selector)

It receives the response and a selector when called for each node matching the

provided tag name.

Note: Your spider won't work if you don't override this method.

6
process_results(response,results)

It returns a list of results and response returned by the spider.

CSVFeedSpider

It iterates through each of its rows, receives a CSV file as a response, and
calls parse_row() method. It has the following class:

class scrapy.spiders.CSVFeedSpider

The following table shows the options that can be set regarding the CSV file:

Sr.

No.
Option & Description

1
delimiter

It is a string containing a comma(',') separator for each field.

2
quotechar

It is a string containing quotation mark('"') for each field.

3
headers

It is a list of statements from where the fields can be extracted.

4
parse_row(response,row)

It receives a response and each row along with a key for header.

Scrapy

14

CSVFeedSpider Example

from scrapy.spiders import CSVFeedSpider

from demoproject.items import DemoItem

class DemoSpider(CSVFeedSpider):

 name = "demo"

 allowed_domains = ["www.demoexample.com"]

 start_urls = ["http://www.demoexample.com/feed.csv"]

 delimiter = ";"

 quotechar = "'"

 headers = ["product_title", "product_link", "product_description"]

 def parse_row(self, response, row):

 self.logger.info("This is row: %r", row)

 item = DemoItem()

 item["product_title"] = row["product_title"]

 item["product_link"] = row["product_link"]

 item["product_description"] = row["product_description"]

 return item

SitemapSpider

SitemapSpider with the help of Sitemaps crawl a website by locating the URLs from
robots.txt. It has the following class:

class scrapy.spiders.SitemapSpider

The following table shows the fields of SitemapSpider:

Sr.

No.
Field & Description

1
sitemap_urls

A list of URLs which you want to crawl pointing to the sitemaps.

2

sitemap_rules

It is a list of tuples (regex, callback), where regex is a regular expression, and

callback is used to process URLs matching a regular expression.

http://www.sitemaps.org/

Scrapy

15

3
sitemap_follow

It is a list of sitemap's regexes to follow.

4
sitemap_alternate_links

Specifies alternate links to be followed for a single url.

SitemapSpider Example

The following SitemapSpider processes all the URLs:

from scrapy.spiders import SitemapSpider

class DemoSpider(SitemapSpider):

 urls = ["http://www.demoexample.com/sitemap.xml"]

 def parse(self, response):

 # You can scrap items here

The following SitemapSpider processes some URLs with callback:

from scrapy.spiders import SitemapSpider

class DemoSpider(SitemapSpider):

 urls = ["http://www.demoexample.com/sitemap.xml"]

 rules = [

 ("/item/", "parse_item"),

 ("/group/", "parse_group"),

]

 def parse_item(self, response):

 # you can scrap item here

 def parse_group(self, response):

 # you can scrap group here

Scrapy

16

The following code shows sitemaps in the robots.txt whose url has /sitemap_company:

from scrapy.spiders import SitemapSpider

class DemoSpider(SitemapSpider):

 urls = ["http://www.demoexample.com/robots.txt"]

 rules = [

 ("/company/", "parse_company"),

]

 sitemap_follow = ["/sitemap_company"]

 def parse_company(self, response):

 # you can scrap company here

You can even combine SitemapSpider with other URLs as shown in the following command.

from scrapy.spiders import SitemapSpider

class DemoSpider(SitemapSpider):

 urls = ["http://www.demoexample.com/robots.txt"]

 rules = [

 ("/company/", "parse_company"),

]

 other_urls = ["http://www.demoexample.com/contact-us"]

 def start_requests(self):

 requests = list(super(DemoSpider, self).start_requests())

 requests += [scrapy.Request(x, self.parse_other) for x in self.other_urls]

 return requests

 def parse_company(self, response):

 # you can scrap company here...

 def parse_other(self, response):

 # you can scrap other here...

Scrapy

17

Description

When you are scraping the web pages, you need to extract a certain part of the HTML

source by using the mechanism called selectors, achieved by using

either XPath or CSS expressions. Selectors are built upon the lxml library, which
processes the XML and HTML in Python language.

Use the following code snippet to define different concepts of selectors:

<html>

 <head>

 <title>My Website</title>

 </head>

 <body>

 Hello world!!!

 <div class='links'>

 Link 1

 Link 2

 Link 3

 </div>

 </body>

</html>

Constructing Selectors

You can construct the selector class instances by passing

the text or TextResponse object. Based on the provided input type, the selector chooses
the following rules:

from scrapy.selector import Selector

from scrapy.http import HtmlResponse

Using the above code, you can construct from the text as:

Selector(text=body).xpath('//span/text()').extract()

It will display the result as:

[u'Hello world!!!']

5. Scrapy ─ Selectors

Scrapy

18

You can construct from the response as:

response = HtmlResponse(url='http://mysite.com', body=body)

Selector(response=response).xpath('//span/text()').extract()

It will display the result as:

[u'Hello world!!!']

Using Selectors

Using the above simple code snippet, you can construct the XPath for selecting the text
which is defined in the title tag as shown below:

>>response.selector.xpath('//title/text()')

Now, you can extract the textual data using the .extract() method shown as follows:

>>response.xpath('//title/text()').extract()

It will produce the result as:

[u'My Website']

You can display the name of all elements shown as follows:

>>response.xpath('//div[@class="links"]/a/text()').extract()

It will display the elements as:

Link 1

Link 2

Link 3

If you want to extract the first element, then use the method .extract_first(), shown as
follows:

>>response.xpath('//div[@class="links"]/a/text()').extract_first()

It will display the element as:

Link 1

Scrapy

19

Nesting Selectors

Using the above code, you can nest the selectors to display the page link and image source
using the .xpath() method, shown as follows:

links = response.xpath('//a[contains(@href, "image")]')

for index, link in enumerate(links):

 args = (index, link.xpath('@href').extract(),
link.xpath('img/@src').extract())

 print 'The link %d pointing to url %s and image %s' % args

It will display the result as:

Link 1 pointing to url [u'one.html'] and image [u'image1.jpg']

Link 2 pointing to url [u'two.html'] and image [u'image2.jpg']

Link 3 pointing to url [u'three.html'] and image [u'image3.jpg']

Selectors Using Regular Expressions

Scrapy allows to extract the data using regular expressions, which uses the .re() method.
From the above HTML code, we will extract the image names shown as follows:

>>response.xpath('//a[contains(@href, "image")]/text()').re(r'Name:\s*(.*)')

The above line displays the image names as:

[u'Link 1',

 u'Link 2',

 u'Link 3']

Using Relative XPaths

When you are working with XPaths, which starts with the /, nested selectors and XPath
are related to absolute path of the document, and not the relative path of the selector.

If you want to extract the <p> elements, then first gain all div elements:

>>mydiv = response.xpath('//div')

Next, you can extract all the 'p' elements inside, by prefixing the XPath with a dot
as .//p as shown below:

>>for p in mydiv.xpath('.//p').extract()

Scrapy

20

Using EXSLT Extensions

The EXSLT is a community that issues the extensions to the XSLT (Extensible Stylesheet

Language Transformations) which converts XML documents to XHTML documents. You can

use the EXSLT extensions with the registered namespace in the XPath expressions as

shown in the following table:

Sr. No. Prefix & Usage Namespace

1
re

regular expressions
http://exslt.org/regular-expressions

2
set

set manipulation
http://exslt.org/sets

You can check the simple code format for extracting data using regular expressions in the
previous section.

There are some XPath tips, which are useful when using XPath with Scrapy selectors. For
more information, click this link.

XPath Tips

Using Text Nodes in a Condition

When you are using text nodes in a XPath string function, then use . (dot) instead of using
.//text(), because this produces the collection of text elements called as node-set.

For instance:

from scrapy import Selector

val = Selector(text='More Infoclick here')

If you are converting a node-set to a string, then use the following format:

>>val.xpath('//a//text()').extract()

It will display the element as:

[u'More Info',u'click here']

and

>>val.xpath("string('//a[1]//text())").extract()

It results the element as:

[u'More Info']

http://exslt.org/regexp/index.html
http://exslt.org/set/index.html
https://www.tutorialspoint.com/scrapy/xpth_tips.htm

Scrapy

21

Difference Between //node[1] and (//node)[1]

The //node[1] displays all the first elements defined under respective parents.
The (//node)[1] displays only first element in the document.

For instance:

from scrapy import Selector

val = Selector(text="""

 <ul class="list">

 one

 one

 one

 <ul class="list">

 four

 five

 six

 """)

res = lambda x: val.xpath(x).extract()

The following line displays all the first li elements defined under their respective parents:

>>res("//li[1]")

It will display the result as

[u'one', u'four']

You can get the first li element of the complete document shown as follows:

>>res("(//li)[1]")

It will display the result as

[u'one']

You can also display all the first li elements defined under ul parent:

>>res("//ul//li[1]")

It will display the result as

[u'one', u'four']

Scrapy

22

You can get the first li element defined under ul parent in the whole document shown as
follows:

>>res("(//ul//li)[1]")

It will display the result as

[u'one']

Built-in Selectors Reference

The built-in selectors include the following class:

class scrapy.selector.Selector(response=None, text=None, type=None)

The above class contains the following parameters:

 response: It is a HTMLResponse and XMLResponse that selects and extracts the data.

 text: It encodes all the characters using the UTF-8 character encoding, when there is

no response available.

 type: It specifies the different selector types, such as html for HTML Response, xml for

XMLResponse type and none for default type. It selects the type depending on the
response type or sets to html by default, if it is used with the text.

The built-in selectors contain the following methods:

Sr.

No.
Method & Description

1

xpath(query)

It matches the nodes according to the xpath query and provides the results

as SelectorList instance. The parameter query specifies the XPATH query to be

used.

2

css(query)

It supplies the CSS selector and gives back the SelectorList instance. The

parameter query specifies CSS selector to be used.

3
extract()

It brings out all the matching nodes as a list of unicode strings.

4

re(regex)

It supplies the regular expression and brings out the matching nodes as a list of

unicode strings. The parameter regex can be used as a regular expression or

string, which compiles to regular expression using the re.compile(regex) method.

5

register_namespace(prefix, uri)

It specifies the namespace used in the selector. You cannot extract the data

without registering the namespace from the non-standard namespace.

Scrapy

23

6

remove_namespaces()

It discards the namespace and gives permission to traverse the document using

the namespace-less xpaths.

7
__nonzero__()

If the content is selected, then this method returns true, otherwise returns false.

SelectorList Objects

class scrapy.selector.SelectorList

The SelectorList objects contains the following methods:

Sr.

No.
Method & Description

1

xpath(query)

It uses the .xpath() method for the elements and provides the results

as SelectorList instance. The parameter query specifies the arguments as defined

in the Selector.xpath() method.

2

css(query)

It uses the .css() method for the elements and gives back the results

as SelectorList instance. The parameter query specifies the arguments as defined

in the Selector.css() method.

3

extract()

It brings out all the elements of the list using the .extract() method and returns

the result as a list of unicode strings.

4

re()

It uses the .re() method for the elements and brings out the elements as a list of

unicode strings.

5
__nonzero__()

If the list is not empty, then this method returns true, otherwise returns false.

The SelectorList objects contain some of the concepts as explained in this link.

SelectorList Objects

Selector Examples on HTML Response

Following are some of the examples on HTMLResponse and we will have HTMLResponse
object, which is instantiated with the selector, shown as follows:

res = Selector(html_response)

https://www.tutorialspoint.com/scrapy/selectorlist_objects.htm

Scrapy

24

You can select the h2 elements from HTML response body, which returns the SelectorList
object as:

>>res.xpath("//h2")

You can select the h2 elements from HTML response body, which returns the list of unicode
strings as:

>>res.xpath("//h2").extract()

It returns the h2 elements.

and

>>res.xpath("//h2/text()").extract()

It returns the text defined under h2 tag and does not include h2 tag elements.

You can run through the p tags and display the class attribute as:

for ele in res.xpath("//p"):

 print ele.xpath("@class").extract()

Selector Examples on XML Response

Following are some of the examples on XMLResponse and we will have XMLResponse

object, which is instantiated with the selector, shown as follows:

res = Selector(xml_response)

You can select the description elements from XML response body, which returns the
SelectorList object as:

>>res.xpath("//description")

You can get the price value from the Google Base XML feed by registering a namespace
as:

>>res.register_namespace("g", "http://base.google.com/ns/1.0")

>>res.xpath("//g:price").extract()

Scrapy

25

Removing Namespaces

When you are creating the Scrapy projects, you can remove the namespaces using

the Selector.remove_namespaces() method and use the element names to work

appropriately with XPaths.

There are two reasons for not calling the namespace removal procedure always in the

project:

 You can remove the namespace which requires repeating the document and

modifying the all elements that leads to expensive operation to crawl documents

by Scrapy.

 In some cases, you need to use namespaces and these may conflict with the some
element names and namespaces. This type of case occurs very often.

Scrapy

26

Description

Scrapy process can be used to extract the data from sources such as web pages using the

spiders. Scrapy uses Item class to produce the output whose objects are used to gather
the scraped data.

Declaring Items

You can declare the items using the class definition syntax along with the field objects
shown as follows:

import scrapy

class MyProducts(scrapy.Item):

 productName = Field()

 productLink = Field()

 imageURL = Field()

 price = Field()

 size = Field()

Item Fields

The item fields are used to display the metadata for each field. As there is no limitation of

values on the field objects, the accessible metadata keys does not ontain any reference

list of the metadata. The field objects are used to specify all the field metadata and you

can specify any other field key as per your requirement in the project. The field objects
can be accessed using the Item.fields attribute.

Working with Items

There are some common functions which can be defined when you are working with the
items. For more information, click this link.

Items

Creating Items

You can create the items as shown in the following format:

>>myproduct = Product(name='Mouse', price=400)

>>print myproduct

6. Scrapy ─ Items

https://www.tutorialspoint.com/scrapy/working_with_items.htm

Scrapy

27

The above code produces the following result:

Product(name='Mouse', price=400)

Getting Field Values

You can get the field values as shown in the following way:

>>myproduct[name]

It will print result as 'Mouse'

Or in another way, you can get the value using get() method as:

>>myproduct.get(name)

It will print result as 'Mouse'

You can also check whether the field is present or not using the following way:

>>'name' in myproduct

It will print the result as 'True'

Or

>>'fname' in myproduct

It will print the result as 'False'

Setting Field Values

You can set value for the field shown as follows:

>>myproduct['fname'] = 'smith'

>>myproduct['fname']

Accessing all Populated Values

It is possible to access all the values, which reside in the 'Product' item.

>>myproduct.keys()

It will print the result as:

['name', 'price']

Scrapy

28

Or you can access all the values along with the field values shown as follows:

>>myproduct.items()

It will print the result as:

[('name', 'Mouse'), ('price', 400)]

It's possible to copy items from one field object to another field object as described:

>> myresult = Product(myproduct)

>> print myresult

It will print the output as:

Product(name='Mouse', price=400)

>> myresult1 = myresult.copy()

>> print myresult1

It will print the output as:

Product(name='Mouse', price=400)

Extending Items

The items can be extended by stating the subclass of the original item. For instance:

class MyProductDetails(Product):

 original_rate = scrapy.Field(serializer=str)

 discount_rate = scrapy.Field()

You can use the existing field metadata to extend the field metadata by adding more
values or changing the existing values as shown in the following code:

class MyProductPackage(Product):

 name = scrapy.Field(Product.fields['name'], serializer=serializer_demo)

Item Objects

The item objects can be specified using the following class which provides the new
initialized item from the given argument:

class scrapy.item.Item([arg])

The Item provides a copy of the constructor and provides an extra attribute that is given
by the items in the fields.

Scrapy

29

Field Objects

The field objects can be specified using the following class in which the Field class doesn't
issue the additional process or attributes:

class scrapy.item.Field([arg])

Scrapy

30

Description

Item loaders provide a convenient way to fill the items that are scraped from the websites.

Declaring Item Loaders

The declaration of Item Loaders is like Items.

For example:

from scrapy.loader import ItemLoader

from scrapy.loader.processors import TakeFirst, MapCompose, Join

class DemoLoader(ItemLoader):

 default_output_processor = TakeFirst()

 title_in = MapCompose(unicode.title)

 title_out = Join()

 size_in = MapCompose(unicode.strip)

 # you can continue scraping here

In the above code, you can see that input processors are declared using _in suffix and
output processors are declared using _out suffix.

The ItemLoader.default_input_processor and ItemLoader.default_output_proce

ssor attributes are used to declare default input/output processors.

Using Item Loaders to Populate Items

To use Item Loader, first instantiate with dict-like object or without one where the item
uses Item class specified in ItemLoader.default_item_class attribute.

 You can use selectors to collect values into the Item Loader.

 You can add more values in the same item field, where Item Loader will use an
appropriate handler to add these values.

7. Scrapy ─ Item Loaders

Scrapy

31

The following code demonstrates how items are populated using Item Loaders:

from scrapy.loader import ItemLoader

from demoproject.items import Demo

def parse(self, response):

 l = ItemLoader(item = Product(), response = response)

 l.add_xpath("title", "//div[@class='product_title']")

 l.add_xpath("title", "//div[@class='product_name']")

 l.add_xpath("desc", "//div[@class='desc']")

 l.add_css("size", "div#size]")

 l.add_value("last_updated", "yesterday")

 return l.load_item()

As shown above, there are two different XPaths from which the title field is extracted
using add_xpath() method:

1. //div[@class="product_title"]

2. //div[@class="product_name"]

Thereafter, a similar request is used for desc field. The size data is extracted using

add_css() method and last_updated is filled with a value "yesterday" using
add_value() method.

Once all the data is collected, call ItemLoader.load_item() method which returns the

items filled with data extracted using add_xpath(), add_css() and add_value()
methods.

Input and Output Processors

Each field of an Item Loader contains one input processor and one output processor.

 When data is extracted, input processor processes it and its result is stored in

ItemLoader.

 Next, after collecting the data, call ItemLoader.load_item() method to get the

populated Item object.

 Finally, you can assign the result of the output processor to the item.

Scrapy

32

The following code demonstrates how to call input and output processors for a specific
field:

l = ItemLoader(Product(), some_selector)

l.add_xpath("title", xpath1) # [1]

l.add_xpath("title", xpath2) # [2]

l.add_css("title", css) # [3]

l.add_value("title", "demo") # [4]

return l.load_item() # [5]

Line 1: The data of title is extracted from xpath1 and passed through the input processor
and its result is collected and stored in ItemLoader.

Line 2: Similarly, the title is extracted from xpath2 and passed through the same input

processor and its result is added to the data collected for [1].

Line 3: The title is extracted from css selector and passed through the same input

processor and the result is added to the data collected for [1] and [2].

Line 4: Next, the value "demo" is assigned and passed through the input processors.

Line 5: Finally, the data is collected internally from all the fields and passed to the output
processor and the final value is assigned to the Item.

Declaring Input and Output Processors

The input and output processors are declared in the ItemLoader definition. Apart from this,
they can also be specified in the Item Field metadata.

For example:

import scrapy

from scrapy.loader.processors import Join, MapCompose, TakeFirst

from w3lib.html import remove_tags

def filter_size(value):

 if value.isdigit():

 return value

class Item(scrapy.Item):

 name = scrapy.Field(

 input_processor = MapCompose(remove_tags),

 output_processor = Join(),

)

 size = scrapy.Field(

Scrapy

33

 input_processor = MapCompose(remove_tags, filter_price),

 output_processor = TakeFirst(),

)

>>> from scrapy.loader import ItemLoader

>>> il = ItemLoader(item=Product())

>>> il.add_value('title', [u'Hello', u'world'])

>>> il.add_value('size', [u'100 kg'])

>>> il.load_item()

It displays an output as:

{'title': u'Hello world', 'size': u'100 kg'}

Item Loader Context

The Item Loader Context is a dict of arbitrary key values shared among input and output
processors.

For example, assume you have a function parse_length:

def parse_length(text, loader_context):

 unit = loader_context.get('unit', 'cm')

 # You can write parsing code of length here

 return parsed_length

By receiving loader_context arguements, it tells the Item Loader it can receive Item Loader

context. There are several ways to change the value of Item Loader context:

 Modify current active Item Loader context:

loader = ItemLoader (product)

loader.context ["unit"] = "mm"

 On Item Loader instantiation:

loader = ItemLoader(product, unit="mm")

 On Item Loader declaration for input/output processors that instantiates with Item
Loader context:

class ProductLoader(ItemLoader):

 length_out = MapCompose(parse_length, unit="mm")

Scrapy

34

ItemLoader Objects

It is an object which returns a new item loader to populate the given item. It has the
following class:

class scrapy.loader.ItemLoader([item, selector, response,]**kwargs)

The following table shows the parameters of ItemLoader objects:

Sr. No. Parameter & Description

1
item

It is the item to populate by calling add_xpath(), add_css() or add_value().

2
selector

It is used to extract data from websites.

3
response

It is used to construct selector using default_selector_class.

Following table shows the methods of ItemLoader objects:

Sr. No. Method & Description Example

1

get_value(value,

*processors, **kwargs)

By a given processor and

keyword arguments, the

value is processed

by get_value() method.

 >>> from scrapy.loader.processors
import TakeFirst

 >>> loader.get_value(u'title:
demoweb', TakeFirst(), unicode.upper,
re='title: (.+)')

 'DEMOWEB`

2

add_value(field_name,

value, *processors,

**kwargs)

It processes the value and

adds to the field where it is

first passed

through get_value by giving

processors and keyword

arguments before passing

through field input processor.

loader.add_value('title', u'DVD')

loader.add_value('colors', [u'black',
u'white'])

loader.add_value('length', u'80')

loader.add_value('price', u'2500')

Scrapy

35

3

replace_value(field_name,

value, *processors,

**kwargs)

It replaces the collected data

with a new value.

loader.replace_value('title', u'DVD')

loader.replace_value('colors',
[u'black', u'white'])

loader.replace_value('length', u'80')

loader.replace_value('price', u'2500')

4

get_xpath(xpath,

*processors, **kwargs)

It is used to extract unicode

strings by giving processors

and keyword arguments by

receiving XPath.

 # HTML code: <div class="item-
name">DVD</div>

loader.get_xpath("//div[@class='item-
name']")

 # HTML code: <div id="length">the
length is 45cm</div>

loader.get_xpath("//div[@id='length']",
TakeFirst(), re="the length is (.*)")

5

add_xpath(field_name,

xpath, *processors,

**kwargs)

It receives XPath to the field

which extracts unicode strings.

 # HTML code: <div class="item-
name">DVD</div>

 loader.add_xpath('name',
'//div[@class="item-name"]')

 # HTML code: <div id="length">the
length is 45cm</div>

 loader.add_xpath('length',
'//div[@id="length"]', re='the length
is (.*)')

6

replace_xpath(field_name,

xpath, *processors,

**kwargs)

It replaces the collected data

using XPath from sites.

 # HTML code: <div class="item-
name">DVD</div>

 loader.replace_xpath('name',
'//div[@class="item-name"]')

 # HTML code: <div id="length">the
length is 45cm</div>

 loader.replace_xpath('length',
'//div[@id="length"]', re='the length
is (.*)')

Scrapy

36

7

get_css(css, *processors,

**kwargs)

It receives CSS selector used to

extract the unicode strings.

 loader.get_css("div.item-name")

 loader.get_css("div#length",
TakeFirst(), re="the length is (.*)")

8

add_css(field_name, css,

*processors, **kwargs)

It is similar

to add_value() method with one

difference that it

adds CSS selector to the field.

 loader.add_css('name', 'div.item-
name')

 loader.add_css('length',
'div#length', re='the length is (.*)')

9

replace_css(field_name, css,

*processors, **kwargs)

It replaces the extracted data

using CSS selector.

 loader.replace_css('name',
'div.item-name')

 loader.replace_css('length',
'div#length', re='the length is (.*)')

10

load_item()

When the data is collected, this

method fills the item with

collected data and returns it.

 def parse(self, response):

 l = ItemLoader(item=Product(),
response=response)

 l.add_xpath('title',
'//div[@class="product_title"]')

 loader.load_item()

11

nested_xpath(xpath)

It is used to create nested

loaders with an XPath selector.

 loader = ItemLoader(item=Item())

 loader.add_xpath('social',
'a[@class = "social"]/@href')

 loader.add_xpath('email', 'a[@class
= "email"]/@href')

12

nested_css(css)

It is used to create nested

loaders with a CSS selector.

 loader = ItemLoader(item=Item())

 loader.add_css('social', 'a[@class
= "social"]/@href')

 loader.add_css('email', 'a[@class =
"email"]/@href')

Scrapy

37

Following table shows the attributes of ItemLoader objects:

Sr.

No.
Attribute & Description

1
item

It is an object on which the Item Loader performs parsing.

2
context

It is the current context of Item Loader that is active.

3
default_item_class

It is used to represent the items, if not given in the constructor.

4

default_input_processor

The fields which don't specify input processor are the only ones for

which default_input_processors are used.

5

default_output_processor

The fields which don't specify the output processor are the only ones for

which default_output_processors are used.

6
default_selector_class

It is a class used to construct the selector, if it is not given in the constructor.

7
selector

It is an object that can be used to extract the data from sites.

Nested Loaders

It is used to create nested loaders while parsing the values from the subsection of a

document. If you don't create nested loaders, you need to specify full XPath or CSS for
each value that you want to extract.

For instance, assume that the data is being extracted from a header page:

<header>

 facebook

 twitter

 send mail

</header>

Scrapy

38

Next, you can create a nested loader with header selector by adding related values to the
header:

loader = ItemLoader(item=Item())

header_loader = loader.nested_xpath('//header')

header_loader.add_xpath('social', 'a[@class = "social"]/@href')

header_loader.add_xpath('email', 'a[@class = "email"]/@href')

loader.load_item()

Reusing and Extending Item Loaders

Item Loaders are designed to relieve the maintenance which becomes a fundamental

problem when your project acquires more spiders.

For instance, assume that a site has their product name enclosed in three dashes (e.g. --

-DVD---). You can remove those dashes by reusing the default Product Item Loader, if you
don’t want it in the final product names as shown in the following code:

from scrapy.loader.processors import MapCompose

from demoproject.ItemLoaders import DemoLoader

def strip_dashes(x):

 return x.strip('-')

class SiteSpecificLoader(DemoLoader):

 title_in = MapCompose(strip_dashes, DemoLoader.title_in)

Available Built-in Processors

Following are some of the commonly used built-in processors:

class scrapy.loader.processors.Identity

It returns the original value without altering it. For example:

>>> from scrapy.loader.processors import Identity

>>> proc = Identity()

>>> proc(['a', 'b', 'c'])

['a', 'b', 'c']

Scrapy

39

class scrapy.loader.processors.TakeFirst

It returns the first value that is non-null/non-empty from the list of received values. For
example:

>>> from scrapy.loader.processors import TakeFirst

>>> proc = TakeFirst()

>>> proc(['', 'a', 'b', 'c'])

'a'

class scrapy.loader.processors.Join(separator = u' ')

It returns the value attached to the separator. The default separator is u' ' and it is

equivalent to the function u' '.join. For example:

>>> from scrapy.loader.processors import Join

>>> proc = Join()

>>> proc(['a', 'b', 'c'])

u'a b c'

>>> proc = Join('
')

>>> proc(['a', 'b', 'c'])

u'a
b
c'

class scrapy.loader.processors.Compose(*functions,

**default_loader_context)

It is defined by a processor where each of its input value is passed to the first function,

and the result of that function is passed to the second function and so on, till lthe ast
function returns the final value as output.

For example:

>>> from scrapy.loader.processors import Compose

>>> proc = Compose(lambda v: v[0], str.upper)

>>> proc(['python', 'scrapy'])

'PYTHON'

class scrapy.loader.processors.MapCompose(*functions,

**default_loader_context)

It is a processor where the input value is iterated and the first function is applied to each

element. Next, the result of these function calls are concatenated to build new iterable
that is then applied to the second function and so on, till the last function.

Scrapy

40

For example:

>>> def filter_scrapy(x):

 return None if x == 'scrapy' else x

>>> from scrapy.loader.processors import MapCompose

>>> proc = MapCompose(filter_scrapy, unicode.upper)

>>> proc([u'hi', u'everyone', u'im', u'pythonscrapy'])

[u'HI, u'IM', u'PYTHONSCRAPY']

class scrapy.loader.processors.SelectJmes(json_path)

This class queries the value using the provided json path and returns the output.

For example:

>>> from scrapy.loader.processors import SelectJmes, Compose, MapCompose

>>> proc = SelectJmes("hello")

>>> proc({'hello': 'scrapy'})

'scrapy'

>>> proc({'hello': {'scrapy': 'world'}})

{'scrapy': 'world'}

Following is the code, which queries the value by importing json:

>>> import json

>>> proc_single_json_str = Compose(json.loads, SelectJmes("hello"))

>>> proc_single_json_str('{"hello": "scrapy"}')

u'scrapy'

>>> proc_json_list = Compose(json.loads, MapCompose(SelectJmes('hello')))

>>> proc_json_list('[{"hello":"scrapy"}, {"world":"env"}]')

[u'scrapy']

Scrapy

41

Description

Scrapy shell can be used to scrap the data with error free code, without the use of spider.

The main purpose of Scrapy shell is to test the extracted code, XPath, or CSS expressions.
It also helps specify the web pages from which you are scraping the data.

Configuring the Shell

The shell can be configured by installing the IPython (used for interactive computing)

console, which is a powerful interactive shell that gives the auto completion, colorized

output, etc.

If you are working on the Unix platform, then it's better to install the IPython. You can

also use bpython, if IPython is inaccessible.

You can configure the shell by setting the environment variable
called SCRAPY_PYTHON_SHELL or by defining the scrapy.cfg file as follows:

[settings]

shell = bpython

Launching the Shell

Scrapy shell can be launched using the following command:

scrapy shell <url>

The url specifies the URL for which the data needs to be scraped.

Using the Shell

The shell provides some additional shortcuts and Scrapy objects as described in the
following table:

Available Shortcuts

Shell provides the following available shortcuts in the project:

Sr.

No.
Shortcut & Description

1
shelp()

It provides the available objects and shortcuts with the help option.

2

fetch(request_or_url)

It collects the response from the request or URL and associated objects will get

updated properly.

8. Scrapy ─ Shell

http://ipython.org/
http://www.bpython-interpreter.org/

Scrapy

42

3

view(response)

You can view the response for the given request in the local browser for

observation and to display the external link correctly, it appends a base tag to

the response body.

Available Scrapy Objects

Shell provides the following available Scrapy objects in the project:

Sr.

No.
Object & Description

1
crawler

It specifies the current crawler object.

2

spider

If there is no spider for present URL, then it will handle the URL or spider object

by defining the new spider.

3
request

It specifies the request object for the last collected page.

4
response

It specifies the response object for the last collected page.

5
settings

It provides the current Scrapy settings.

Example of Shell Session

Let us try scraping scrapy.org site and then begin to scrap the data from reddit.com as
described.

Before moving ahead, first we will launch the shell as shown in the following command:

scrapy shell 'http://scrapy.org' --nolog

Scrapy will display the available objects while using the above URL:

[s] Available Scrapy objects:

[s] crawler

[s] item {}

[s] request

[s] response <200 http://scrapy.org>

[s] settings

[s] spider

[s] Useful shortcuts:

Scrapy

43

[s] shelp() Provides available objects and shortcuts with help
option

[s] fetch(req_or_url) Collects the response from the request or URL and
associated objects will get update

[s] view(response) View the response for the given request

Next, begin with the working of objects, shown as follows:

>> response.xpath('//title/text()').extract_first()

u'Scrapy | A Fast and Powerful Scraping and Web Crawling Framework'

>> fetch("http://reddit.com")

[s] Available Scrapy objects:

[s] crawler

[s] item {}

[s] request

[s] response <200 https://www.reddit.com/>

[s] settings

[s] spider

[s] Useful shortcuts:

[s] shelp() Shell help (print this help)

[s] fetch(req_or_url) Fetch request (or URL) and update local objects

[s] view(response) View response in a browser

>> response.xpath('//title/text()').extract()

[u'reddit: the front page of the internet']

>> request = request.replace(method="POST")

>> fetch(request)

[s] Available Scrapy objects:

[s] crawler

...

Scrapy

44

Invoking the Shell from Spiders to Inspect Responses

You can inspect the responses which are processed from the spider, only if you are
expecting to get that response.

For instance:

import scrapy

class SpiderDemo(scrapy.Spider):

 name = "spiderdemo"

 start_urls = [

 "http://mysite.com",

 "http://mysite1.org",

 "http://mysite2.net",

]

 def parse(self, response):

 # You can inspect one specific response

 if ".net" in response.url:

 from scrapy.shell import inspect_response

 inspect_response(response, self)

As shown in the above code, you can invoke the shell from spiders to inspect the responses

using the following function:

scrapy.shell.inspect_response

Now run the spider, and you will get the following screen:

2016-02-08 18:15:20-0400 [scrapy] DEBUG: Crawled (200) (referer: None)

2016-02-08 18:15:20-0400 [scrapy] DEBUG: Crawled (200) (referer: None)

2016-02-08 18:15:20-0400 [scrapy] DEBUG: Crawled (200) (referer: None)

[s] Available Scrapy objects:

[s] crawler

...

>> response.url

'http://mysite2.org'

Scrapy

45

You can examine whether the extracted code is working using the following code:

>> response.xpath('//div[@class="val"]')

It displays the output as

[]

The above line has displayed only a blank output. Now you can invoke the shell to inspect
the response as follows:

>> view(response)

It displays the response as

True

Scrapy

46

Description

Item Pipeline is a method where the scrapped items are processed. When an item is sent

to the Item Pipeline, it is scraped by a spider and processed using several components,
which are executed sequentially.

Whenever an item is received, it decides either of the following action:

 Keep processing the item.

 Drop it from pipeline.

 Stop processing the item.

Item pipelines are generally used for the following purposes:

 Storing scraped items in database.

 If the received item is repeated, then it will drop the repeated item.

 It will check whether the item is with targeted fields.

 Clearing HTML data.

Syntax

You can write the Item Pipeline using the following method:

process_item(self, item, spider)

The above method contains following parameters:

 Item (item object or dictionary) - It specifies the scraped item.

 spider (spider object) - The spider which scraped the item.

You can use additional methods given in the following table:

Sr.

No.
Method & Description Parameters

1
open_spider(self, spider)

It is selected when spider is opened.

spider (spider object) - It refers to the

spider which was opened.

2
close_spider(self, spider)

It is selected when spider is closed.

spider (spider object) - It refers to the

spider which was closed.

3

from_crawler(cls, crawler)

With the help of crawler, the pipeline

can access the core components such

as signals and settings of Scrapy.

crawler (Crawler object) – It refers to

the crawler that uses this pipeline.

9. Scrapy ─ Item Pipeline

Scrapy

47

Example

Following are the examples of item pipeline used in different concepts.

Dropping Items with No Tag

In the following code, the pipeline balances the (price) attribute for those items that do

not include VAT (excludes_vat attribute) and ignore those items which do not have a price

tag:

from Scrapy.exceptions import DropItem

class PricePipeline(object):

 vat = 2.25

 def process_item(self, item, spider):

 if item['price']:

 if item['excludes_vat']:

 item['price'] = item['price'] * self.vat

 return item

 else:

 raise DropItem("Missing price in %s" % item)

Writing Items to a JSON File

The following code will store all the scraped items from all spiders into a

single items.jl file, which contains one item per line in a serialized form in JSON format.
The JsonWriterPipeline class is used in the code to show how to write item pipeline:

import json

class JsonWriterPipeline(object):

 def __init__(self):

 self.file = open('items.jl', 'wb')

 def process_item(self, item, spider):

 line = json.dumps(dict(item)) + "\n"

 self.file.write(line)

 return item

Scrapy

48

Writing Items to MongoDB

You can specify the MongoDB address and database name in Scrapy settings and MongoDB

collection can be named after the item class. The following code describes how to

use from_crawler() method to collect the resources properly:

import pymongo

class MongoPipeline(object):

 collection_name = 'Scrapy_list'

 def __init__(self, mongo_uri, mongo_db):

 self.mongo_uri = mongo_uri

 self.mongo_db = mongo_db

 @classmethod

 def from_crawler(cls, crawler):

 return cls(

 mongo_uri=crawler.settings.get('MONGO_URI'),

 mongo_db=crawler.settings.get('MONGO_DB', 'lists')

)

 def open_spider(self, spider):

 self.client = pymongo.MongoClient(self.mongo_uri)

 self.db = self.client[self.mongo_db]

 def close_spider(self, spider):

 self.client.close()

 def process_item(self, item, spider):

 self.db[self.collection_name].insert(dict(item))

 return item

Duplicating Filters

A filter will check for the repeated items and it will drop the already processed items. In

the following code, we have used a unique id for our items, but spider returns many items
with the same id:

Scrapy

49

from scrapy.exceptions import DropItem

class DuplicatesPipeline(object):

 def __init__(self):

 self.ids_seen = set()

 def process_item(self, item, spider):

 if item['id'] in self.ids_seen:

 raise DropItem("Repeated items found: %s" % item)

 else:

 self.ids_seen.add(item['id'])

 return item

Activating an Item Pipeline

You can activate an Item Pipeline component by adding its class to

the ITEM_PIPELINES setting as shown in the following code. You can assign integer values

to the classes in the order in which they run (the order can be lower valued to higher

valued classes) and values will be in the 0-1000 range.

ITEM_PIPELINES = {

 'myproject.pipelines.PricePipeline': 100,

 'myproject.pipelines.JsonWriterPipeline': 600,

}

Scrapy

50

Description

Feed exports is a method of storing the data scraped from the sites, that is generating

a "export file".

Serialization Formats

Using multiple serialization formats and storage backends, Feed Exports use Item
exporters and generates a feed with scraped items.

The following table shows the supported formats:

Sr. No. Format & Description

1

JSON

FEED_FORMAT is json

Exporter used is class scrapy.exporters.JsonItemExporter

2

JSON lines

FEED_FROMAT is jsonlines

Exporter used is class scrapy.exporters.JsonLinesItemExporter

3

CSV

FEED_FORMAT is CSV

Exporter used is class scrapy.exporters.CsvItemExporter

4

XML

FEED_FORMAT is xml

Exporter used is class scrapy.exporters.XmlItemExporter

Using FEED_EXPORTERS settings, the supported formats can also be extended:

Sr. No. Format & Description

1

Pickle

FEED_FORMAT is pickle

Exporter used is class scrapy.exporters.PickleItemExporter

2

Marshal

FEED_FORMAT is marshal

Exporter used is class scrapy.exporters.MarshalItemExporter

10. Scrapy ─ Feed Exports

Scrapy

51

Storage Backends

Storage backend defines where to store the feed using URI.

Following table shows the supported storage backends:

Sr. No. Storage Backend & Description

1
Local filesystem

URI scheme is file and it is used to store the feeds.

2
FTP

URI scheme is ftp and it is used to store the feeds.

3

S3

URI scheme is S3 and the feeds are stored on Amazon S3. External

libraries botocore or boto are required.

4
Standard output

URI scheme is stdout and the feeds are stored to the standard output.

Storage URI Parameters

Following are the parameters of storage URL, which gets replaced while the feed is being

created:

 %(time)s: This parameter gets replaced by a timestamp.

 %(name)s: This parameter gets replaced by spider name.

Settings

Following table shows the settings using which Feed exports can be configured:

Sr. No. Setting & Description

1
FEED_URI

It is the URI of the export feed used to enable feed exports.

2
FEED_FORMAT

It is a serialization format used for the feed.

3
FEED_EXPORT_FIELDS

It is used for defining fields which needs to be exported.

4
FEED_STORE_EMPTY

It defines whether to export feeds with no items.

https://github.com/boto/botocore
https://github.com/boto/boto

Scrapy

52

5
FEED_STORAGES

It is a dictionary with additional feed storage backends.

6
FEED_STORAGES_BASE

It is a dictionary with built-in feed storage backends.

7
FEED_EXPORTERS

It is a dictionary with additional feed exporters.

8
FEED_EXPORTERS_BASE

It is a dictionary with built-in feed exporters.

Scrapy

53

Description

Scrapy can crawl websites using the Request and Response objects. The request objects

pass over the system, uses the spiders to execute the request and get back to the request
when it returns a response object.

Request Objects

The request object is a HTTP request that generates a response. It has the following class:

class scrapy.http.Request(url[, callback, method='GET', headers, body, cookies,
meta, encoding='utf-8', priority=0, dont_filter=False, errback])

Following table shows the parameters of Request objects:

Sr.

No.
Parameter & Description

1
url

It is a string that specifies the URL request.

2

callback

It is a callable function which uses the response of the request as first

parameter.

3
method

It is a string that specifies the HTTP method request.

4
headers

It is a dictionary with request headers.

5
body

It is a string or unicode that has a request body.

6
cookies

It is a list containing request cookies.

7
meta

It is a dictionary that contains values for metadata of the request.

8
encoding

It is a string containing utf-8 encoding used to encode URL.

9

priority

It is an integer where the scheduler uses priority to define the order to process

requests.

11. Scrapy ─ Requests & Responses

Scrapy

54

10
dont_filter

It is a boolean specifying that the scheduler should not filter the request.

11

errback

It is a callable function to be called when an exception while processing a

request is raised.

Passing Additional Data to Callback Functions

The callback function of a request is called when the response is downloaded as its first
parameter.

For example:

def parse_page1(self, response):

 return scrapy.Request("http://www.something.com/some_page.html",

 callback=self.parse_page2)

 def parse_page2(self, response):

 self.logger.info("%s page visited", response.url)

You can use Request.meta attribute, if you want to pass arguments to callable functions

and receive those arguments in the second callback as shown in the following example:

def parse_page1(self, response):

 item = DemoItem()

 item['foremost_link'] = response.url

 request = scrapy.Request("http://www.something.com/some_page.html",

 callback=self.parse_page2)

 request.meta['item'] = item

 return request

 def parse_page2(self, response):

 item = response.meta['item']

 item['other_link'] = response.url

 return item

Using errbacks to Catch Exceptions in Request Processing

The errback is a callable function to be called when an exception while processing a request
is raised.

The following example demonstrates this.

import scrapy

Scrapy

55

from scrapy.spidermiddlewares.httperror import HttpError

from twisted.internet.error import DNSLookupError

from twisted.internet.error import TimeoutError, TCPTimedOutError

class DemoSpider(scrapy.Spider):

 name = "demo"

 start_urls = [

 "http://www.httpbin.org/", # HTTP 200 expected

 "http://www.httpbin.org/status/404", # Webpage not found

 "http://www.httpbin.org/status/500", # Internal server error

 "http://www.httpbin.org:12345/", # timeout expected

 "http://www.httphttpbinbin.org/", # DNS error expected

]

 def start_requests(self):

 for u in self.start_urls:

 yield scrapy.Request(u, callback=self.parse_httpbin,

 errback=self.errback_httpbin,

 dont_filter=True)

 def parse_httpbin(self, response):

 self.logger.info('Recieved response from {}'.format(response.url))

 # ...

 def errback_httpbin(self, failure):

 # logs failures

 self.logger.error(repr(failure))

 if failure.check(HttpError):

 response = failure.value.response

 self.logger.error("HttpError occurred on %s", response.url)

 elif failure.check(DNSLookupError):

 request = failure.request

 self.logger.error("DNSLookupError occurred on %s", request.url)

Scrapy

56

 elif failure.check(TimeoutError, TCPTimedOutError):

 request = failure.request

 self.logger.error("TimeoutError occurred on %s", request.url)

Request.meta Special Keys

The request.meta special keys is a list of special meta keys identified by Scrapy.

Following table shows some of the keys of Request.meta:

Sr.

No.
Key & Description

1

dont_redirect

It is a key when set to true, does not redirect the request based on the status of

the response.

2

dont_retry

It is a key when set to true, does not retry the failed requests and will be ignored

by the middleware.

3
handle_httpstatus_list

It is a key that defines which response codes per-request basis can be allowed.

4
handle_httpstatus_all

It is a key used to allow any response code for a request by setting it to true.

5
dont_merge_cookies

It is a key used to avoid merging with the existing cookies by setting it to true.

6
cookiejar

It is a key used to keep multiple cookie sessions per spider.

7
dont_cache

It is a key used to avoid caching HTTP requests and response on each policy.

8
redirect_urls

It is a key which contains URLs through which the requests pass.

9
bindaddress

It is the IP of the outgoing IP address that can be used to perform the request.

10

dont_obey_robotstxt

It is a key when set to true, does not filter the requests prohibited by the

robots.txt exclusion standard, even if ROBOTSTXT_OBEY is enabled.

Scrapy

57

11

download_timeout

It is used to set timeout (in secs) per spider for which the downloader will wait

before it times out.

12

download_maxsize

It is used to set maximum size (in bytes) per spider, which the downloader will

download.

13
proxy

Proxy can be set for Request objects to set HTTP proxy for the use of requests.

Request Subclasses

You can implement your own custom functionality by subclassing the request class. The
built-in request subclasses are as follows:

FormRequest Objects

The FormRequest class deals with HTML forms by extending the base request. It has the

following class:

class scrapy.http.FormRequest(url[,formdata, callback, method='GET', headers,
body, cookies, meta, encoding='utf-8', priority=0, dont_filter=False, errback])

Following is the parameter:

formdata: It is a dictionary having HTML form data that is assigned to the body of the
request.

Note: Remaining parameters are the same as request class and is explained in Request

Objects section.

The following class methods are supported by FormRequest objects in addition

to request methods:

classmethod from_response(response[, formname=None, formnumber=0,
formdata=None, formxpath=None, formcss=None, clickdata=None,
dont_click=False, ...])

The following table shows the parameters of the above class:

Sr.

No.
Parameter & Description

1

response

It is an object used to pre-populate the form fields using HTML form of

response.

2
formname

It is a string where the form having name attribute will be used, if specified.

Scrapy

58

3

formnumber

It is an integer of forms to be used when there are multiple forms in the

response.

4
formdata

It is a dictionary of fields in the form data used to override.

5
formxpath

It is a string when specified, the form matching the xpath is used.

6
formcss

It is a string when specified, the form matching the css selector is used.

7
clickdata

It is a dictionary of attributes used to observe the clicked control.

8

dont_click

The data from the form will be submitted without clicking any element, when

set to true.

Examples

Following are some of the request usage examples:

Using FormRequest to send data via HTTP POST

The following code demonstrates how to return FormRequest object when you want to
duplicate HTML form POST in your spider:

return [FormRequest(url="http://www.something.com/post/action",

 formdata={'firstname': 'John', 'lastname': 'dave'},

 callback=self.after_post)]

Using FormRequest.from_response() to simulate a user login

Normally, websites use elements through which it provides pre-populated form fields.

The FormRequest.form_response() method can be used when you want these fields to
be automatically populate while scraping.

The following example demonstrates this.

import scrapy

class DemoSpider(scrapy.Spider):

 name = 'demo'

 start_urls = ['http://www.something.com/users/login.php']

 def parse(self, response):

Scrapy

59

 return scrapy.FormRequest.from_response(

 response,

 formdata={'username': 'admin', 'password': 'confidential'},

 callback=self.after_login

)

 def after_login(self, response):

 if "authentication failed" in response.body:

 self.logger.error("Login failed")

 return

 # You can continue scraping here

Response Objects

It is an object indicating HTTP response that is fed to the spiders to process. It has the

following class:

class scrapy.http.Response(url[, status=200, headers, body, flags])

The following table shows the parameters of Response objects:

Sr. No. Parameter & Description

1
url

It is a string that specifies the URL response.

2
status

It is an integer that contains HTTP status response.

3
headers

It is a dictionary containing response headers.

4
body

It is a string with response body.

5
flags

It is a list containing flags of response.

Response Subclasses

You can implement your own custom functionality by subclassing the response class. The
built-in response subclasses are as follows:

TextResponse objects

Scrapy

60

TextResponse objects are used for binary data such as images, sounds, etc. which has the
ability to encode the base Response class. It has the following class:

class scrapy.http.TextResponse(url[, encoding[,status=200, headers, body,
flags]])

Following is the parameter:

encoding: It is a string with encoding that is used to encode a response.

Note: Remaining parameters are same as response class and is explained in Response

Objects section.

The following table shows the attributes supported by TextResponse object in addition
to response methods:

Sr.

No.
Attribute & Description

1
text

It is a response body, where response.text can be accessed multiple times.

2
encoding

It is a string containing encoding for response.

3
selector

It is an attribute instantiated on first access and uses response as target.

The following table shows the methods supported by TextResponse objects in addition
to response methods:

Sr.

No.
Method & Description

1
xpath (query)

It is a shortcut to TextResponse.selector.xpath(query).

2
css (query)

It is a shortcut to TextResponse.selector.css(query).

3

body_as_unicode()

It is a response body available as a method, where response.text can be

accessed multiple times.

HtmlResponse Objects

It is an object that supports encoding and auto-discovering by looking at the meta http-

equiv attribute of HTML. Its parameters are the same as response class and is explained
in Response objects section. It has the following class:

Scrapy

61

class scrapy.http.HtmlResponse(url[,status=200, headers, body, flags])

XmlResponse Objects

It is an object that supports encoding and auto-discovering by looking at the XML line. Its

parameters are the same as response class and is explained in Response objects section.
It has the following class:

class scrapy.http.XmlResponse(url[, status=200, headers, body, flags])

Scrapy

62

Description

As the name itself indicates, Link Extractors are the objects that are used to extract links

from web pages using scrapy.http.Response objects. In Scrapy, there are built-in

extractors such as scrapy.linkextractors import LinkExtractor. You can customize your
own link extractor according to your needs by implementing a simple interface.

Every link extractor has a public method called extract_links which includes

a Response object and returns a list of scrapy.link.Link objects. You can instantiate the

link extractors only once and call the extract_links method various times to extract links

with different responses. The CrawlSpiderclass uses link extractors with a set of rules
whose main purpose is to extract links.

Built-in Link Extractor's Reference

Normally link extractors are grouped with Scrapy and are provided

in scrapy.linkextractors module. By default, the link extractor will be LinkExtractor which
is equal in functionality with LxmlLinkExtractor:

from scrapy.linkextractors import LinkExtractor

LxmlLinkExtractor

class scrapy.linkextractors.lxmlhtml.LxmlLinkExtractor(allow=(), deny=(),
allow_domains=(), deny_domains=(), deny_extensions=None, restrict_xpaths=(),
restrict_css=(), tags=('a', 'area'), attrs=('href',), canonicalize=True,
unique=True, process_value=None)

The LxmlLinkExtractor is a highly recommended link extractor, because it has handy

filtering options and it is used with lxml’s robust HTMLParser.

Sr.

No.
Parameters Description

1
allow (a regular

expression (or list of))

It allows a single expression or group of expressions

that should match the URL which is to be extracted. If

it is not mentioned, it will match all the links.

2
deny (a regular

expression (or list of))

It blocks or excludes a single expression or group of

expressions that should match the URL which is not to

be extracted. If it is not mentioned or left empty, then

it will not eliminate the undesired links.

3
allow_domains

(str or list)

It allows a single string or list of strings that should

match the domains from which the links are to be

extracted.

12. Scrapy ─ Link Extractors

Scrapy

63

4
deny_domains

(str or list)

It blocks or excludes a single string or list of strings

that should match the domains from which the links are

not to be extracted.

5
deny_extensions

(list)

It blocks the list of strings with the extensions when

extracting the links. If it is not set, then by default it

will be set to IGNORED_EXTENSIONS which contains

pre-defined list in scrapy.linkextractors package.

6
restrict_xpaths

(str or list)

It is an XPath list region from where the links are to be

extracted from the response. If given, the links will be

extracted only from the text, which is selected by XPath.

7
restrict_css

(str or list)

It behaves similar to restrict_xpaths parameter which

will extract the links from the CSS selected regions

inside the response.

8
tags

(str or list)

A single tag or a list of tags that should be considered

when extracting the links. By default, it will be (’a’, ’area’).

9
attrs

(list)

A single attribute or list of attributes should be

considered while extracting links. By default, it will

be (’href’,).

10
canonicalize

(boolean)

The extracted url is brought to standard form

using scrapy.utils.url.canonicalize_url. By default, it

will be True.

11
unique

(boolean)
It will be used if the extracted links are repeated.

12
process_value

(callable)

It is a function which receives a value from scanned

tags and attributes. The value received may be altered

and returned or else nothing will be returned to reject

the link. If not used, by default it will be lambda x: x.

Example

The following code is used to extract the links:

Link text

The following code function can be used in process_value:

def process_value(val):

 m = re.search("javascript:goToPage\('(.*?)'", val)

 if m:

 return m.group(1)

Scrapy

64

Description

The behavior of Scrapy components can be modified using Scrapy settings. The settings

can also select the Scrapy project that is currently active, in case you have multiple Scrapy
projects.

Designating the Settings

You must notify Scrapy which setting you are using when you scrap a website. For this,

environment variable SCRAPY_SETTINGS_MODULE should be used and its value should

be in Python path syntax.

Populating the Settings

The following table shows some of the mechanisms by which you can populate the
settings:

Sr.

No.
Mechanism & Description

1

Command line options

Here, the arguments that are passed takes highest precedence by overriding

other options. The -s is used to override one or more settings.

scrapy crawl myspider -s LOG_FILE=scrapy.log

2

Settings per-spider

Spiders can have their own settings that overrides the project ones by using

attribute custom_settings.

class DemoSpider(scrapy.Spider):

 name = 'demo'

 custom_settings = {

 'SOME_SETTING': 'some value',

 }

13. Scrapy ─ Settings

Scrapy

65

3

Project settings module

Here, you can populate your custom settings such as adding or modifying the

settings in the settings.py file.

4

Default settings per-command

Each Scrapy tool command defines its own settings in the default_settings

attribute, to override the global default settings.

5

Default global settings

These settings are found in the scrapy.settings.default_settings module.

Access Settings

They are available through self.settings and set in the base spider after it is initialized.

The following example demonstrates this.

class DemoSpider(scrapy.Spider):

 name = 'demo'

 start_urls = ['http://example.com']

 def parse(self, response):

 print("Existing settings: %s" % self.settings.attributes.keys())

To use settings before initializing the spider, you must override from_crawler method in

the _init_() method of your spider. You can access settings through
attribute scrapy.crawler.Crawler.settings passed to from_crawler method.

The following example demonstrates this.

class MyExtension(object):

 def __init__(self, log_is_enabled=False):

 if log_is_enabled:

 print("Enabled log")

 @classmethod

 def from_crawler(cls, crawler):

 settings = crawler.settings

 return cls(settings.getbool('LOG_ENABLED'))

Scrapy

66

Rationale for Setting Names

Setting names are added as a prefix to the component they configure. For example, for

robots.txt extension, the setting names can be ROBOTSTXT_ENABLED,

ROBOTSTXT_OBEY, ROBOTSTXT_CACHEDIR, etc.

Built-in Settings Reference

The following table shows the built-in settings of Scrapy:

Sr.

No.
Setting & Description

1

AWS_ACCESS_KEY_ID

It is used to access Amazon Web Services.

Default value: None

2

AWS_SECRET_ACCESS_KEY

It is used to access Amazon Web Services.

Default value: None

3

BOT_NAME

It is the name of bot that can be used for constructing User-Agent.

Default value: 'scrapybot'

4

CONCURRENT_ITEMS

Maximum number of existing items in the Item Processor used to process

parallely.

Default value: 100

5

CONCURRENT_REQUESTS

Maximum number of existing requests which Scrapy downloader performs.

Default value: 16

6

CONCURRENT_REQUESTS_PER_DOMAIN

Maximum number of existing requests that perform simultaneously for any

single domain.

Default value: 8

7

CONCURRENT_REQUESTS_PER_IP

Maximum number of existing requests that performs simultaneously to any

single IP.

Default value: 0

Scrapy

67

8

DEFAULT_ITEM_CLASS

It is a class used to represent items.

Default value: 'scrapy.item.Item'

9

DEFAULT_REQUEST_HEADERS

It is a default header used for HTTP requests of Scrapy.

Default value:

{

 'Accept':
'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
'Accept-Language': 'en',

}

10

DEPTH_LIMIT

The maximum depth for a spider to crawl any site.

Default value: 0

11

DEPTH_PRIORITY

It is an integer used to alter the priority of request according to the depth.

Default value: 0

12

DEPTH_STATS

It states whether to collect depth stats or not.

Default value: True

13

DEPTH_STATS_VERBOSE

This setting when enabled, the number of requests is collected in stats for each

verbose depth.

Default value: False

14

DNSCACHE_ENABLED

It is used to enable DNS in memory cache.

Default value: True

Scrapy

68

15

DNSCACHE_SIZE

It defines the size of DNS in memory cache.

Default value: 10000

16

DNS_TIMEOUT

It is used to set timeout for DNS to process the queries.

Default value: 60

17

DOWNLOADER

It is a downloader used for the crawling process.

Default value: 'scrapy.core.downloader.Downloader'

18

DOWNLOADER_MIDDLEWARES

It is a dictionary holding downloader middleware and their orders.

Default value: {}

19

DOWNLOADER_MIDDLEWARES_BASE

It is a dictionary holding downloader middleware that is enabled by default.

Default value: {

'scrapy.downloadermiddlewares.robotstxt.RobotsTxtMiddleware': 100, }

20

DOWNLOADER_STATS

This setting is used to enable the downloader stats.

Default value: True

21

DOWNLOAD_DELAY
It defines the total time for downloader before it downloads the pages from the site.

Default value: 0

22

DOWNLOAD_HANDLERS

It is a dictionary with download handlers.

Default value: {}

23

DOWNLOAD_HANDLERS_BASE

It is a dictionary with download handlers that is enabled by default.

Default value: { 'file':

'scrapy.core.downloader.handlers.file.FileDownloadHandler', }

Scrapy

69

24

DOWNLOAD_TIMEOUT

It is the total time for downloader to wait before it times out.

Default value: 180

25

DOWNLOAD_MAXSIZE

It is the maximum size of response for the downloader to download.

Default value: 1073741824 (1024MB)

26

DOWNLOAD_WARNSIZE

It defines the size of response for downloader to warn.

Default value: 33554432 (32MB)

27

DUPEFILTER_CLASS

It is a class used for detecting and filtering of requests that are duplicate.

Default value: 'scrapy.dupefilters.RFPDupeFilter'

28

DUPEFILTER_DEBUG

This setting logs all duplicate filters when set to true.

Default value: False

29

EDITOR

It is used to edit spiders using the edit command.

Default value: Depends on the environment

30

EXTENSIONS

It is a dictionary having extensions that are enabled in the project.

Default value: {}

31

EXTENSIONS_BASE

It is a dictionary having built-in extensions.

Default value: { 'scrapy.extensions.corestats.CoreStats': 0, }

32

FEED_TEMPDIR

It is a directory used to set the custom folder where crawler temporary files can

be stored.

Scrapy

70

33

ITEM_PIPELINES

It is a dictionary having pipelines.

Default value: {}

34

LOG_ENABLED

It defines if the logging is to be enabled.

Default value: True

35

LOG_ENCODING

It defines the type of encoding to be used for logging.

Default value: 'utf-8'

36

LOG_FILE

It is the name of the file to be used for the output of logging.

Default value: None

37

LOG_FORMAT

It is a string using which the log messages can be formatted.

Default value: '%(asctime)s [%(name)s] %(levelname)s: %(message)s'

38

LOG_DATEFORMAT

It is a string using which date/time can be formatted.

Default value: '%Y-%m-%d %H:%M:%S'

39

LOG_LEVEL

It defines minimum log level.

Default value: 'DEBUG'

40

LOG_STDOUT

This setting if set to true, all your process output will appear in the log.

Default value: False

41

MEMDEBUG_ENABLED

It defines if the memory debugging is to be enabled.

Default Value: False

Scrapy

71

42

MEMDEBUG_NOTIFY

It defines the memory report that is sent to a particular address when memory

debugging is enabled.

Default value: []

43

MEMUSAGE_ENABLED

It defines if the memory usage is to be enabled when a Scrapy process exceeds

a memory limit.

Default value: False

44

MEMUSAGE_LIMIT_MB

It defines the maximum limit for the memory (in megabytes) to be allowed.

Default value: 0

45

MEMUSAGE_CHECK_INTERVAL_SECONDS

It is used to check the present memory usage by setting the length of the

intervals.

Default value: 60.0

46

MEMUSAGE_NOTIFY_MAIL

It is used to notify with a list of emails when the memory reaches the limit.

Default value: False

47

MEMUSAGE_REPORT

It defines if the memory usage report is to be sent on closing each spider.

Default value: False

48

MEMUSAGE_WARNING_MB

It defines a total memory to be allowed before a warning is sent.

Default value: 0

49

NEWSPIDER_MODULE

It is a module where a new spider is created using genspider command.

Default value: ''

Scrapy

72

50

RANDOMIZE_DOWNLOAD_DELAY

It defines a random amount of time for a Scrapy to wait while downloading

the requests from the site.

Default value: True

51

REACTOR_THREADPOOL_MAXSIZE

It defines a maximum size for the reactor threadpool.

Default value: 10

52

REDIRECT_MAX_TIMES

It defines how many times a request can be redirected.

Default value: 20

53

REDIRECT_PRIORITY_ADJUST

This setting when set, adjusts the redirect priority of a request.

Default value: +2

54

RETRY_PRIORITY_ADJUST

This setting when set, adjusts the retry priority of a request.

Default value: -1

55

ROBOTSTXT_OBEY

Scrapy obeys robots.txt policies when set to true.

Default value: False

56

SCHEDULER

It defines the scheduler to be used for crawl purpose.

Default value: 'scrapy.core.scheduler.Scheduler'

57

SPIDER_CONTRACTS

It is a dictionary in the project having spider contracts to test the spiders.

Default value: {}

58

SPIDER_CONTRACTS_BASE

It is a dictionary holding Scrapy contracts which is enabled in Scrapy by default.

Default value:

{

 'scrapy.contracts.default.UrlContract' : 1,

 'scrapy.contracts.default.ReturnsContract': 2,

}

Scrapy

73

59

SPIDER_LOADER_CLASS

It defines a class which implements SpiderLoader API to load spiders.

Default value: 'scrapy.spiderloader.SpiderLoader'

60

SPIDER_MIDDLEWARES

It is a dictionary holding spider middlewares.

Default value: {}

61

SPIDER_MIDDLEWARES_BASE

It is a dictionary holding spider middlewares that is enabled in Scrapy by

default.

Default value:

{

 'scrapy.spidermiddlewares.httperror.HttpErrorMiddleware': 50,

}

62

SPIDER_MODULES

It is a list of modules containing spiders which Scrapy will look for.

Default value: []

63

STATS_CLASS

It is a class which implements Stats Collector API to collect stats.

Default value: 'scrapy.statscollectors.MemoryStatsCollector'

64

STATS_DUMP

This setting when set to true, dumps the stats to the log.

Default value: True

65

STATSMAILER_RCPTS

Once the spiders finish scraping, Scrapy uses this setting to send the stats.

Default value: []

66

TELNETCONSOLE_ENABLED

It defines whether to enable the telnetconsole.

Default value: True

Scrapy

74

67

TELNETCONSOLE_PORT

It defines a port for telnet console.

Default value: [6023, 6073]

68

TEMPLATES_DIR

It is a directory containing templates that can be used while creating new

projects.

Default value: templates directory inside scrapy module

69

URLLENGTH_LIMIT

It defines the maximum limit of the length for URL to be allowed for crawled

URLs.

Default value: 2083

70

USER_AGENT

It defines the user agent to be used while crawling a site.

Default value: "Scrapy/VERSION (+http://scrapy.org)"

For other Scrapy settings, go to this link.

Other Settings

The following table shows other settings of Scrapy:

Sr.

No.
Setting & Description

1

AJAXCRAWL_ENABLED

It is used for enabling the large crawls.

Default value: False

2

AUTOTHROTTLE_DEBUG

It is enabled to see how throttling parameters are adjusted in real time, which

displays stats on every received response.

Default value: False

https://www.tutorialspoint.com/scrapy/scrapy_other_settings.htm

Scrapy

75

3

AUTOTHROTTLE_ENABLED

It is used to enable AutoThrottle extension.

Default value: False

4

AUTOTHROTTLE_MAX_DELAY

It is used to set the maximum delay for download in case of high latencies.

Default value: 60.0

5

AUTOTHROTTLE_START_DELAY

It is used to set the initial delay for download.

Default value: 5.0

6

AUTOTHROTTLE_TARGET_CONCURRENCY

It defines the average number of requests for a Scrapy to send parallely to

remote sites.

Default value: 1.0

7

CLOSESPIDER_ERRORCOUNT

It defines total number of errors that should be recieved before the spider is

closed.

Default value: 0

8

CLOSESPIDER_ITEMCOUNT

It defines a total number of items before closing the spider.

Default value: 0

9

CLOSESPIDER_PAGECOUNT

It defines the maximum number of responses to crawl before spider closes.

Default value: 0

10

CLOSESPIDER_TIMEOUT

It defines the amount of time (in sec) for a spider to close.

Default value: 0

11

COMMANDS_MODULE

It is used when you want to add custom commands in your project.

Default value: ''

Scrapy

76

12

COMPRESSION_ENABLED

It indicates that the compression middleware is enabled.

Default value: True

13

COOKIES_DEBUG

If set to true, all the cookies sent in requests and received in responses are

logged.

Default value: False

14

COOKIES_ENABLED

It indicates that cookies middleware is enabled and sent to web servers.

Default value: True

15

FILES_EXPIRES

It defines the delay for the file expiration.

Default value: 90 days

16

FILES_RESULT_FIELD

It is set when you want to use other field names for your processed files.

17
FILES_STORE

It is used to store the downloaded files by setting it to a valid value.

18

FILES_STORE_S3_ACL

It is used to modify the ACL policy for the files stored in Amazon S3 bucket.

Default value: private

19

FILES_URLS_FIELD

It is set when you want to use other field name for your files URLs.

20

HTTPCACHE_ALWAYS_STORE

Spider will cache the pages thoroughly if this setting is enabled.

Default value: False

21

HTTPCACHE_DBM_MODULE

It is a database module used in DBM storage backend.

Default value: 'anydbm'

Scrapy

77

22

HTTPCACHE_DIR

It is a directory used to enable and store the HTTP cache.

Default value: 'httpcache'

23

HTTPCACHE_ENABLED

It indicates that HTTP cache is enabled.

Default value: False

24

HTTPCACHE_EXPIRATION_SECS

It is used to set the expiration time for HTTP cache.

Default value: 0

25

HTTPCACHE_GZIP

This setting if set to true, all the cached data will be compressed with gzip.

Default value: False

26

HTTPCACHE_IGNORE_HTTP_CODES

It states that HTTP responses should not be cached with HTTP codes.

Default value: []

27

HTTPCACHE_IGNORE_MISSING

This setting if enabled, the requests will be ignored if not found in the cache.

Default value: False

28

HTTPCACHE_IGNORE_RESPONSE_CACHE_CONTROLS

It is a list containing cache controls to be ignored.

Default value: []

29

HTTPCACHE_IGNORE_SCHEMES

It states that HTTP responses should not be cached with URI schemes.

Default value: ['file']

30

HTTPCACHE_POLICY

It defines a class implementing cache policy.

Default value: 'scrapy.extensions.httpcache.DummyPolicy'

31

HTTPCACHE_STORAGE

It is a class implementing the cache storage.

Default value: 'scrapy.extensions.httpcache.FilesystemCacheStorage'

Scrapy

78

32

HTTPERROR_ALLOWED_CODES

It is a list where all the responses are passed with non-200 status codes.

Default value: []

33

HTTPERROR_ALLOW_ALL

This setting when enabled, all the responses are passed despite of its status

codes.

Default value: False

34

HTTPPROXY_AUTH_ENCODING

It is used to authenticate the proxy on HttpProxyMiddleware.

Default value: "latin-1"

35

IMAGES_EXPIRES

It defines the delay for the images expiration.

Default value: 90 days

36
IMAGES_MIN_HEIGHT

It is used to drop images that are too small using minimum size.

37
IMAGES_MIN_WIDTH

It is used to drop images that are too small using minimum size.

38
IMAGES_RESULT_FIELD

It is set when you want to use other field name for your processed images.

39
IMAGES_STORE

It is used to store the downloaded images by setting it to a valid value.

40

IMAGES_STORE_S3_ACL

It is used to modify the ACL policy for the images stored in Amazon S3

bucket.

Default value: private

41
IMAGES_THUMBS

It is set to create the thumbnails of downloaded images.

42
IMAGES_URLS_FIELD

It is set when you want to use other field name for your images URLs.

Scrapy

79

43

MAIL_FROM

The sender uses this setting to send the emails.

Default value: 'scrapy@localhost'

44

MAIL_HOST

It is a SMTP host used to send emails.

Default value: 'localhost'

45

MAIL_PASS

It is a password used to authenticate SMTP.

Default value: None

46

MAIL_PORT

It is a SMTP port used to send emails.

Default value: 25

47

MAIL_SSL

It is used to implement connection using SSL encrypted connection.

Default value: False

48

MAIL_TLS

When enabled, it forces connection using STARTTLS.

Default value: False

49

MAIL_USER

It defines a user to authenticate SMTP.

Default value: None

50

METAREFRESH_ENABLED

It indicates that meta refresh middleware is enabled.

Default value: True

51

METAREFRESH_MAXDELAY

It is a maximum delay for a meta-refresh to redirect.

Default value: 100

52

REDIRECT_ENABLED

It indicates that the redirect middleware is enabled.

Default value: True

Scrapy

80

53

REDIRECT_MAX_TIMES

It defines the maximum number of times for a request to redirect.

Default value: 20

54

REFERER_ENABLED

It indicates that referrer middleware is enabled.

Default value: True

55

RETRY_ENABLED

It indicates that the retry middleware is enabled.

Default value: True

56

RETRY_HTTP_CODES

It defines which HTTP codes are to be retried.

Default value: [500, 502, 503, 504, 408]

57

RETRY_TIMES

It defines maximum number of times for retry.

Default value: 2

58

TELNETCONSOLE_HOST

It defines an interface on which the telnet console must listen.

Default value: '127.0.0.1'

59

TELNETCONSOLE_PORT

It defines a port to be used for telnet console.

Default value: [6023, 6073]

Scrapy

81

Description

The irregular events are referred to as exceptions. In Scrapy, exceptions are raised due

to reasons such as missing configuration, dropping item from the item pipeline, etc.
Following is the list of exceptions mentioned in Scrapy and their application.

DropItem

Item Pipeline utilizes this exception to stop processing of the item at any stage. It can be
written as:

exception (scrapy.exceptions.DropItem)

CloseSpider

This exception is used to stop the spider using the callback request. It can be written as:

exception (scrapy.exceptions.CloseSpider)(reason='cancelled')

It contains parameter called reason (str) which specifies the reason for closing.

For instance, the following code shows this exception usage:

def parse_page(self, response):

 if 'Bandwidth exceeded' in response.body:

 raise CloseSpider('bandwidth_exceeded')

IgnoreRequest

This exception is used by scheduler or downloader middleware to ignore a request. It can
be written as:

exception (scrapy.exceptions.IgnoreRequest)

NotConfigured

It indicates a missing configuration situation and should be raised in a component constructor.

exception (scrapy.exceptions.NotConfigured)

This exception can be raised, if any of the following components are disabled.

 Extensions

 Item pipelines

 Downloader middlewares

 Spider middlewares

14. Scrapy ─ Exceptions

Scrapy

82

NotSupported

This exception is raised when any feature or method is not supported. It can be written
as:

exception (scrapy.exceptions.NotSupported)

Scrapy

83

Scrapy Live Project

Scrapy

84

Description

To scrap the data from web pages, first you need to create the Scrapy project where you

will be storing the code. To create a new directory, run the following command:

scrapy startproject first_scrapy

The above code will create a directory with name first_scrapy and it will contain the

following structure:

first_scrapy/

scrapy.cfg # deploy configuration file

first_scrapy/ # project's Python module, you'll import your code from here

__init__.py

items.py # project items file

pipelines.py # project pipelines file

settings.py # project settings file

spiders/ # a directory where you'll later put your spiders

__init__.py

15. Scrapy ─ Create a Project

Scrapy

85

Description

Items are the containers used to collect the data that is scrapped from the websites. You

must start your spider by defining your Item. To define items, edit items.py file found
under directory first_scrapy (custom directory). The items.py looks like the following:

import scrapy

class First_scrapyItem(scrapy.Item):

 # define the fields for your item here like:

 # name = scrapy.Field()

The MyItem class inherits from Item containing a number of pre-defined objects that

Scrapy has already built for us. For instance, if you want to extract the name, URL, and

description from the sites, you need to define the fields for each of these three attributes.

Hence, let's add those items that we want to collect:

from scrapy.item import Item, Field

class First_scrapyItem(scrapy.Item):

 name = scrapy.Field()

 url = scrapy.Field()

 desc = scrapy.Field()

16. Scrapy ─ Define an Item

Scrapy

86

Description

Spider is a class that defines initial URL to extract the data from, how to follow pagination

links and how to extract and parse the fields defined in the items.py. Scrapy provides
different types of spiders each of which gives a specific purpose.

Create a file called "first_spider.py" under the first_scrapy/spiders directory, where we

can tell Scrapy how to find the exact data we're looking for. For this, you must define some
attributes:

 name: It defines the unique name for the spider.

 allowed_domains: It contains the base URLs for the spider to crawl.

 start-urls: A list of URLs from where the spider starts crawling.

 parse(): It is a method that extracts and parses the scraped data.

The following code demonstrates how a spider code looks like:

import scrapy

class firstSpider(scrapy.Spider):

 name = "first"

 allowed_domains = ["dmoz.org"]

 start_urls = [

 "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",

 "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"

]

 def parse(self, response):

 filename = response.url.split("/")[-2] + '.html'

 with open(filename, 'wb') as f:

 f.write(response.body)

17. Scrapy ─ First Spider

Scrapy

87

Description

To execute your spider, run the following command within your first_scrapy directory:

scrapy crawl first

Where, first is the name of the spider specified while creating the spider.

Once the spider crawls, you can see the following output:

2016-08-09 18:13:07-0400 [scrapy] INFO: Scrapy started (bot: tutorial)

2016-08-09 18:13:07-0400 [scrapy] INFO: Optional features available: ...

2016-08-09 18:13:07-0400 [scrapy] INFO: Overridden settings: {}

2016-08-09 18:13:07-0400 [scrapy] INFO: Enabled extensions: ...

2016-08-09 18:13:07-0400 [scrapy] INFO: Enabled downloader middlewares: ...

2016-08-09 18:13:07-0400 [scrapy] INFO: Enabled spider middlewares: ...

2016-08-09 18:13:07-0400 [scrapy] INFO: Enabled item pipelines: ...

2016-08-09 18:13:07-0400 [scrapy] INFO: Spider opened

2016-08-09 18:13:08-0400 [scrapy] DEBUG: Crawled (200) <GET
http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/>
(referer: None)

2016-08-09 18:13:09-0400 [scrapy] DEBUG: Crawled (200) <GET
http://www.dmoz.org/Computers/Programming/Languages/Python/Books/> (referer:
None)

2016-08-09 18:13:09-0400 [scrapy] INFO: Closing spider (finished)

As you can see in the output, for each URL there is a log line which (referer: None) states

that the URLs are start URLs and they have no referrers. Next, you should see two new

files named Books.html and Resources.html are created in your first_scrapy directory.

18. Scrapy ─ Crawling

Scrapy

88

Description

For extracting data from web pages, Scrapy uses a technique called selectors based

on XPath and CSS expressions. Following are some examples of XPath expressions:

 /html/head/title: This will select the <title> element, inside

the <head> element of an HTML document.

 /html/head/title/text(): This will select the text within the

same <title> element.

 //td: This will select all the elements from<td>.

 //div[@class="slice"]: This will select all the elements from div which contain

an attribute class="slice".

Selectors have four basic methods as shown in the following table:

Sr.

No.
Method & Description

1
extract()

It returns a unicode string along with the selected data.

2

re()

It returns a list of unicode strings, extracted when the regular expression was

given as argument.

3

xpath()

It returns a list of selectors, which represents the nodes selected by the xpath

expression given as an argument.

4

css()

It returns a list of selectors, which represents the nodes selected by the CSS

expression given as an argument.

Using Selectors in the Shell

To demonstrate the selectors with the built-in Scrapy shell, you need to

have IPython installed in your system. The important thing here is, the URLs should be

included within the quotes while running Scrapy; otherwise the URLs with '&' characters

won't work. You can start a shell by using the following command in the project's top level

directory:

scrapy shell
"http://www.dmoz.org/Computers/Programming/Languages/Python/Books/"

19. Scrapy ─ Extracting Items

https://www.w3.org/TR/xpath/
https://www.w3.org/TR/selectors/
http://ipython.org/

Scrapy

89

A shell will look like the following:

[... Scrapy log here ...]

2014-01-23 17:11:42-0400 [scrapy] DEBUG: Crawled (200) <GET
http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>(referer: None)

[s] Available Scrapy objects:

[s] crawler <scrapy.crawler.Crawler object at 0x3636b50>

[s] item {}

[s] request <GET http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>

[s] response <200 http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>

[s] settings <scrapy.settings.Settings object at 0x3fadc50>

[s] spider <Spider 'default' at 0x3cebf50>

[s] Useful shortcuts:

[s] shelp() Shell help (print this help)

[s] fetch(req_or_url) Fetch request (or URL) and update local objects

[s] view(response) View response in a browser

In [1]:

When shell loads, you can access the body or header by using response.body

and response.header respectively. Similarly, you can run queries on the response

using response.selector.xpath() or response.selector.css().

For instance:

In [1]: response.xpath('//title')

Out[1]: [<Selector xpath='//title' data=u'<title>My Book - Scrapy'>]

In [2]: response.xpath('//title').extract()

Out[2]: [u'<title>My Book - Scrapy: Index: Chapters</title>']

In [3]: response.xpath('//title/text()')

Out[3]: [<Selector xpath='//title/text()' data=u'My Book - Scrapy: Index:'>]

In [4]: response.xpath('//title/text()').extract()

Out[4]: [u'My Book - Scrapy: Index: Chapters']

In [5]: response.xpath('//title/text()').re('(\w+):')

Out[5]: [u'Scrapy', u'Index', u'Chapters']

Scrapy

90

Extracting the Data

To extract data from a normal HTML site, we have to inspect the source code of the site

to get XPaths. After inspecting, you can see that the data will be in the ul tag. Select the
elements within li tag.

The following lines of code shows extraction of different types of data:

For selecting data within li tag:

response.xpath('//ul/li')

For selecting descriptions:

response.xpath('//ul/li/text()').extract()

For selecting site titles:

response.xpath('//ul/li/a/text()').extract()

For selecting site links:

response.xpath('//ul/li/a/@href').extract()

The following code demonstrates the use of above extractors:

import scrapy

class MyprojectSpider(scrapy.Spider):

 name = "project"

 allowed_domains = ["dmoz.org"]

 start_urls = [

 "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",

 "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"

]

 def parse(self, response):

 for sel in response.xpath('//ul/li'):

 title = sel.xpath('a/text()').extract()

 link = sel.xpath('a/@href').extract()

 desc = sel.xpath('text()').extract()

 print title, link, desc

Scrapy

91

Description

Item objects are the regular dicts of Python. We can use the following syntax to access

the attributes of the class:

>>> item = DmozItem()

>>> item['title'] = 'sample title'

>>> item['title']

'sample title'

Add the above code to the following example:

import scrapy

from tutorial.items import DmozItem

class MyprojectSpider(scrapy.Spider):

 name = "project"

 allowed_domains = ["dmoz.org"]

 start_urls = [

 "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",

 "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"

]

 def parse(self, response):

 for sel in response.xpath('//ul/li'):

 item = DmozItem()

 item['title'] = sel.xpath('a/text()').extract()

 item['link'] = sel.xpath('a/@href').extract()

 item['desc'] = sel.xpath('text()').extract()

 yield item

20. Scrapy ─ Using an Item

Scrapy

92

The output of the above spider will be:

[scrapy] DEBUG: Scraped from <200
http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>

 {'desc': [u' - By David Mertz; Addison Wesley. Book in progress, full
text, ASCII format. Asks for feedback. [author website, Gnosis Software,
Inc.\n],

 'link': [u'http://gnosis.cx/TPiP/'],

 'title': [u'Text Processing in Python']}

[scrapy] DEBUG: Scraped from <200
http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>

 {'desc': [u' - By Sean McGrath; Prentice Hall PTR, 2000, ISBN 0130211192,
has CD-ROM. Methods to build XML applications fast, Python tutorial, DOM and
SAX, new Pyxie open source XML processing library. [Prentice Hall PTR]\n'],

 'link': [u'http://www.informit.com/store/product.aspx?isbn=0130211192'],

 'title': [u'XML Processing with Python']}

Scrapy

93

Description

In this chapter, we'll study how to extract the links of the pages of our interest, follow

them and extract data from that page. For this, we need to make the following changes in
our previous code shown as follows:

import scrapy

from tutorial.items import DmozItem

class MyprojectSpider(scrapy.Spider):

 name = "project"

 allowed_domains = ["dmoz.org"]

 start_urls = [

 "http://www.dmoz.org/Computers/Programming/Languages/Python/",

]

 def parse(self, response):

 for href in response.css("ul.directory.dir-col > li > a::attr('href')"):

 url = response.urljoin(href.extract())

 yield scrapy.Request(url, callback=self.parse_dir_contents)

 def parse_dir_contents(self, response):

 for sel in response.xpath('//ul/li'):

 item = DmozItem()

 item['title'] = sel.xpath('a/text()').extract()

 item['link'] = sel.xpath('a/@href').extract()

 item['desc'] = sel.xpath('text()').extract()

 yield item

The above code contains the following methods:

 parse(): It will extract the links of our interest.

 response.urljoin: The parse() method will use this method to build a new url and

provide a new request, which will be sent later to callback.

 parse_dir_contents(): This is a callback which will actually scrape the data of
interest.

21. Scrapy ─ Following Links

https://www.tutorialspoint.com/scrapy/scrapy_using_item.htm

Scrapy

94

Here, Scrapy uses a callback mechanism to follow links. Using this mechanism, the bigger

crawler can be designed and can follow links of interest to scrape the desired data from

different pages. The regular method will be callback method, which will extract the items,
look for links to follow the next page, and then provide a request for the same callback.

The following example produces a loop, which will follow the links to the next page.

def parse_articles_follow_next_page(self, response):

 for article in response.xpath("//article"):

 item = ArticleItem()

 ... extract article data here

 yield item

 next_page = response.css("ul.navigation > li.next-page > a::attr('href')")

 if next_page:

 url = response.urljoin(next_page[0].extract())

 yield scrapy.Request(url, self.parse_articles_follow_next_page)

Scrapy

95

Description

The best way to store scraped data is by using Feed exports, which makes sure that data

is being stored properly using multiple serialization formats. JSON, JSON lines, CSV, XML

are the formats supported readily in serialization formats. The data can be stored with the
following command:

scrapy crawl dmoz -o data.json

This command will create a data.json file containing scraped data in JSON. This technique

holds good for small amount of data. If large amount of data has to be handled, then we

can use Item Pipeline. Just like data.json file, a reserved file is set up when the project is
created in tutorial/pipelines.py.

22. Scrapy ─ Scraped Data

Scrapy

96

Scrapy Built-In Services

Scrapy

97

Description

Logging means tracking of events, which uses built-in logging system and defines

functions and classes to implement applications and libraries. Logging is a ready-to-use
material, which can work with Scrapy settings listed in Logging settings.

Scrapy will set some default settings and handle those settings with the help
of scrapy.utils.log.configure_logging() when running commands.

Log levels

In Python, there are five different levels of severity on a log message. The following list
shows the standard log messages in an ascending order:

 logging.DEBUG - for debugging messages (lowest severity)

 logging.INFO - for informational messages

 logging.WARNING - for warning messages

 logging.ERROR - for regular errors

 logging.CRITICAL - for critical errors (highest severity)

How to Log Messages

The following code shows logging a message using logging.info level.

import logging

logging.info("This is an information")

The above logging message can be passed as an argument using logging.log shown as

follows:

import logging

logging.log(logging.INFO, "This is an information")

Now, you can also use loggers to enclose the message using the logging helpers logging to
get the logging message clearly shown as follows:

import logging

logger = logging.getLogger()

logger.info("This is an information")

23. Scrapy ─ Logging

Scrapy

98

There can be multiple loggers and those can be accessed by getting their names with the
use of logging.getLogger function shown as follows.

import logging

logger = logging.getLogger('mycustomlogger')

logger.info("This is an information")

A customized logger can be used for any module using the __name__ variable which

contains the module path shown as follows:

import logging

logger = logging.getLogger(__name__)

logger.info("This is an information")

Logging from Spiders

Every spider instance has a logger within it and can used as follows:

import scrapy

class LogSpider(scrapy.Spider):

 name = 'logspider'

 start_urls = ['http://dmoz.com']

 def parse(self, response):

 self.logger.info('Parse function called on %s', response.url)

In the above code, the logger is created using the Spider’s name, but you can use any

customized logger provided by Python as shown in the following code:

import logging

import scrapy

logger = logging.getLogger('customizedlogger')

class LogSpider(scrapy.Spider):

 name = 'logspider'

 start_urls = ['http://dmoz.com']

 def parse(self, response):

 logger.info('Parse function called on %s', response.url)

Scrapy

99

Logging Configuration

Loggers are not able to display messages sent by them on their own. So they require

"handlers" for displaying those messages and handlers will be redirecting these messages
to their respective destinations such as files, emails, and standard output.

Depending on the following settings, Scrapy will configure the handler for logger.

Logging Settings

The following settings are used to configure the logging:

 The LOG_FILE and LOG_ENABLED decide the destination for log messages.

 When you set the LOG_ENCODING to false, it won't display the log output messages.

 The LOG_LEVEL will determine the severity order of the message; those messages

with less severity will be filtered out.

 The LOG_FORMAT and LOG_DATEFORMAT are used to specify the layouts for all

messages.

 When you set the LOG_STDOUT to true, all the standard output and error messages
of your process will be redirected to log.

Command-line Options

Scrapy settings can be overridden by passing command-line arguments as shown in the

following table:

Sr. No. Command Description

1 --logfile FILE Overrides LOG_FILE

2 --loglevel/-L LEVEL Overrides LOG_LEVEL

3 --nolog Sets LOG_ENABLED to False

scrapy.utils.log module

This function can be used to initialize logging defaults for Scrapy.

scrapy.utils.log.configure_logging(settings=None, install_root_handler=True)

Sr.

No.
Parameters Description

1 settings (dict, None)
It creates and configures the handler for root logger.

By default, it is None.

2
install_root_handler

(bool)

It specifies to install root logging handler. By default,

it is True.

Scrapy

100

The above function:

 Routes warnings and twisted loggings through Python standard logging.

 Assigns DEBUG to Scrapy and ERROR level to Twisted loggers.

 Routes stdout to log, if LOG_STDOUT setting is true.

Default options can be overridden using the settings argument. When settings are not

specified, then defaults are used. The handler can be created for root logger,

when install_root_handler is set to true. If it is set to false, then there will not be any log

output set. When using Scrapy commands, the configure_logging will be called
automatically and it can run explicitly, while running the custom scripts.

To configure logging's output manually, you can use logging.basicConfig() shown as

follows:

import logging

from scrapy.utils.log import configure_logging

configure_logging(install_root_handler=False)

logging.basicConfig(

 filename='logging.txt',

 format='%(levelname)s: %(your_message)s',

 level=logging.INFO

)

Scrapy

101

Description

Stats Collector is a facility provided by Scrapy to collect the stats in the form of key/values and

it is accessed using the Crawler API (Crawler provides access to all Scrapy core components).

The stats collector provides one stats table per spider in which the stats collector opens
automatically when spider is opening and closes the stats collector when spider is closed.

Common Stats Collector Uses

The following code accesses the stats collector using stats attribute.

class ExtensionThatAccessStats(object):

 def __init__(self, stats):

 self.stats = stats

 @classmethod

 def from_crawler(cls, crawler):

 return cls(crawler.stats)

The following table shows various options can be used with stats collector:

Sr.

No.
Parameters Description

1 stats.set_value('hostname', socket.gethostname()) It is used to set the stats
value.

2 stats.inc_value('customized_count') It increments the stat value.

3 stats.max_value('max_items_scraped', value)
You can set the stat value,
only if greater than previous
value.

4 stats.min_value('min_free_memory_percent', value)
You can set the stat value,

only if lower than previous
value.

5 stats.get_value('customized_count') It fetches the stat value.

6

stats.get_stats()
{'custom_count': 1, 'start_time':
datetime.datetime(2009, 7, 14, 21, 47, 28,
977139)}

It fetches all the stats.

24. Scrapy ─ Stats Collection

Scrapy

102

Available Stats Collectors

Scrapy provides different types of stats collector which can be accessed using
the STATS_CLASS setting.

MemoryStatsCollector

It is the default Stats collector that maintains the stats of every spider which was used for

scraping and the data will be stored in the memory.

class scrapy.statscollectors.MemoryStatsCollector

DummyStatsCollector

This stats collector is very efficient which does nothing. This can be set using

the STATS_CLASS setting and can be used to disable the stats collection in order to
improve the performance.

class scrapy.statscollectors.DummyStatsCollector

Scrapy

103

Description

Scrapy can send e-mails using its own facility called as Twisted non-blocking IO which

keeps away from non-blocking IO of the crawler. You can configure the few settings of
sending emails and provide simple API for sending attachments.

There are two ways to instantiate the MailSender as shown in the following table:

Sr.

No.
Parameters Method

1
from scrapy.mail import MailSender

mailer = MailSender()
By using a standard constructor.

2
mailer =

MailSender.from_settings(settings)
By using Scrapy settings object.

The following line sends an e-mail without attachments:

mailer.send(to=["receiver@example.com"], subject=" subject data", body="body
data", cc=["list@example.com"])

MailSender Class Reference

The MailSender class uses Twisted non-blocking IO for sending e-mails from Scrapy.

class scrapy.mail.MailSender(smtphost=None, mailfrom=None, smtpuser=None,
smtppass=None, smtpport=None)

The following table shows the parameters used in MailSender class:

Sr.

No.
Parameters Description

1 smtphost (str)
The SMTP host is used for sending the emails. If not,

then MAIL_HOST setting will be used.

2 mailfrom (str)
The address of receiver is used to send the emails. If not,

then MAIL_FROM setting will be used.

3 smtpuser

It specifies the SMTP user. If it is not used,

then MAIL_USER setting will be used and there will be no SMTP

validation, if it is not mentioned.

4 smtppass (str) It specifies the SMTP pass for validation.

5 smtpport (int) It specifies the SMTP port for connection.

25. Scrapy ─ Sending an E-mail

https://twistedmatrix.com/documents/current/core/howto/defer-intro.html
https://twistedmatrix.com/documents/current/core/howto/defer-intro.html

Scrapy

104

6
smtptls

(boolean)
It implements using the SMTP STARTTLS.

7
smtpssl

(boolean)
It administers using a safe SSL connection.

Following two methods are there in the MailSender class reference as specified. First
method,

classmethod from_settings(settings)

It incorporates by using the Scrapy settings object. It contains the following parameter:

settings (scrapy.settings.Settings object): It is treated as e-mail receiver.

Another method,

send(to, subject, body, cc=None, attachs=(), mimetype='text/plain',
charset=None)

The following table contains the parameters of the above method:

Sr.

No.
Parameters Description

1 to (list) It refers to the email receiver.

2 subject (str) It specifies the subject of the email.

3 cc (list) It refers to the list of receivers.

4 body (str) It refers to email body data.

5
attachs

(iterable)

It refers to the email's attachment, mimetype of the

attachment and name of the attachment.

6 mimetype (str) It represents the MIME type of the e-mail.

7 charset (str) It specifies the character encoding used for email contents.

Scrapy

105

Mail Settings

The following settings ensure that without writing any code, we can configure an e-mail
using the MailSender class in the project.

Sr.

No.
Settings & Description Default Value

1
MAIL_FROM

It refers to sender email for sending emails.
'scrapy@localhost'

2
MAIL_HOST

It refers to SMTP host used for sending emails.
'localhost'

3
MAIL_PORT

It specifies SMTP port to be used for sending emails.
25

4

MAIL_USER

It refers to SMTP validation. There will be no validation, if

this setting is set to disable.

None

5
MAIL_PASS

It provides the password used for SMTP validation.
None

6

MAIL_TLS

It provides the method of upgrading an insecure connection

to a secure connection using SSL/TLS.

False

7

MAIL_SSL

It implements the connection using a SSL encrypted

connection.

False

Scrapy

106

Description

Telnet console is a Python shell which runs inside Scrapy process and is used for inspecting

and controlling a Scrapy running process.

Access Telnet Console

The telnet console can be accessed using the following command:

telnet localhost 6023

Basically, telnet console is listed in TCP port, which is described in
TELNETCONSOLE_PORT settings.

Variables

Some of the default variables given in the following table are used as shortcuts:

Sr. No. Shortcut & Description

1
crawler

This refers to the Scrapy Crawler (scrapy.crawler.Crawler) object.

2
engine

This refers to Crawler.engine attribute.

3
spider

This refers to the spider which is active.

4
slot

This refers to the engine slot.

5
extensions

This refers to the Extension Manager (Crawler.extensions) attribute.

6
stats

This refers to the Stats Collector (Crawler.stats) attribute.

7
setting

This refers to the Scrapy settings object (Crawler.settings) attribute.

8
est

This refers to print a report of the engine status.

9
prefs

This refers to the memory for debugging.

26. Scrapy ─ Telnet Console

Scrapy

107

10
p

This refers to a shortcut to the pprint.pprint function.

11
hpy

This refers to memory debugging.

Examples

Following are some examples illustrated using Telnet Console.

Pause, Resume and Stop the Scrapy Engine

To pause Scrapy engine, use the following command:

telnet localhost 6023

>>> engine.pause()

>>>

To resume Scrapy engine, use the following command:

telnet localhost 6023

>>> engine.unpause()

>>>

To stop Scrapy engine, use the following command:

telnet localhost 6023

>>> engine.stop()

Connection closed by foreign host.

View Engine Status

Telnet console uses est() method to check the status of Scrapy engine as shown in the
following code:

telnet localhost 6023

>>> est()

Execution engine status

time()-engine.start_time : 8.62972998619

engine.has_capacity() : False

len(engine.downloader.active) : 16

engine.scraper.is_idle() : False

engine.spider.name : followall

https://docs.python.org/3/library/pprint.html#pprint.pprint

Scrapy

108

engine.spider_is_idle(engine.spider) : False

engine.slot.closing : False

len(engine.slot.inprogress) : 16

len(engine.slot.scheduler.dqs or []) : 0

len(engine.slot.scheduler.mqs) : 92

len(engine.scraper.slot.queue) : 0

len(engine.scraper.slot.active) : 0

engine.scraper.slot.active_size : 0

engine.scraper.slot.itemproc_size : 0

engine.scraper.slot.needs_backout() : False

Telnet Console Signals

You can use the telnet console signals to add, update, or delete the variables in the telnet

local namespace. To perform this action, you need to add the telnet_vars dict in your
handler.

scrapy.extensions.telnet.update_telnet_vars(telnet_vars)

Parameters:

telnet_vars (dict)

Where, dict is a dictionary containing telnet variables.

Telnet Settings

The following table shows the settings that control the behavior of Telnet Console:

Sr.

No.
Settings & Description

Default

Value

1

TELNETCONSOLE_PORT

This refers to port range for telnet console. If it is set to none,

then the port will be dynamically assigned.

[6023, 6073]

2

TELNETCONSOLE_HOST

This refers to the interface on which the telnet console should

listen.

'127.0.0.1'

Scrapy

109

Description

A running Scrapy web crawler can be controlled via JSON-RPC. It is enabled by

JSONRPC_ENABLED setting. This service provides access to the main crawler object
via JSON-RPC 2.0 protocol. The endpoint for accessing the crawler object is:

 http://localhost:6080/crawler

The following table contains some of the settings which show the behavior of web service:

Sr.

No.
Setting & Description

Default

Value

1

JSONRPC_ENABLED

This refers to the boolean, which decides the web service along

with its extension will be enabled or not.

True

2

JSONRPC_LOGFILE

This refers to the file used for logging HTTP requests made to the

web service. If it is not set the standard Scrapy log will be used.

None

3

JSONRPC_PORT

This refers to the port range for the web service. If it is set to

none, then the port will be dynamically assigned.

[6080,

7030]

4
JSONRPC_HOST

This refers to the interface the web service should listen on.
'127.0.0.1'

27. Scrapy ─ Web Services

http://www.jsonrpc.org/

