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About the Tutorial 

SciPy, a scientific library for Python is an open source, BSD-licensed library for 

mathematics, science and engineering. The SciPy library depends on NumPy, which 

provides convenient and fast N-dimensional array manipulation. The main reason for 

building the SciPy library is that, it should work with NumPy arrays. It provides many 

user-friendly and efficient numerical practices such as routines for numerical integration 

and optimization. 

This is an introductory tutorial, which covers the fundamentals of SciPy and describes how 

to deal with its various modules. 

 

Audience 

This tutorial is prepared for the readers, who want to learn the basic features along with 

the various functions of SciPy. After completing this tutorial, the readers will find 

themselves at a moderate level of expertise, from where they can take themselves to 

higher levels of expertise. 

 

Prerequisites 

Before proceeding with the various concepts given in this tutorial, it is being expected that 

the readers have a basic understanding of Python. In addition to this, it will be very helpful, 

if the readers have some basic knowledge of other programming languages. 

SciPy library depends on the NumPy library, hence learning the basics of NumPy makes 

the understanding easy. 

 

Copyright and Disclaimer 

 Copyright 2017 by Tutorials Point (I) Pvt. Ltd.  

All the content and graphics published in this e-book are the property of Tutorials Point (I) 

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish 

any contents or a part of contents of this e-book in any manner without written consent 

of the publisher.   

We strive to update the contents of our website and tutorials as timely and as precisely as 

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. 

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our 

website or its contents including this tutorial. If you discover any errors on our website or 

in this tutorial, please notify us at contact@tutorialspoint.com 
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SciPy, pronounced as Sigh Pi, is a scientific python open source, distributed under the BSD 

licensed library to perform Mathematical, Scientific and Engineering Computations. 

The SciPy library depends on NumPy, which provides convenient and fast N-dimensional 

array manipulation. The SciPy library is built to work with NumPy arrays and provides 

many user-friendly and effic ient numerical practices such as routines for numeric al 

integration and optimization. Together, they run on all popular operating systems, are 

quick to install and are free of charge. NumPy and SciPy are easy to use, but powerful 

enough to depend on by some of the world's leading scientists and engineers. 

SciPy Sub-packages 

SciPy is organized into sub-packages covering different scientific computing domains. 

These are summarized in the following table:  

scipy.cluster Vector quantization / Kmeans 

scipy.constants Physical and mathematical constants 

scipy.fftpack Fourier transform 

scipy.integrate Integration routines 

scipy.interpolate Interpolation 

scipy.io Data input and output 

scipy.linalg Linear algebra routines 

scipy.ndimage n-dimensional image package 

scipy.odr Orthogonal distance regression 

scipy.optimize Optimization 

scipy.signal Signal processing 

scipy.sparse Sparse matrices 

1.SciPy – Introduction 

http://docs.scipy.org/doc/scipy/reference/cluster.html#module-scipy.cluster
http://docs.scipy.org/doc/scipy/reference/constants.html#module-scipy.constants
http://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack
http://docs.scipy.org/doc/scipy/reference/integrate.html#module-scipy.integrate
http://docs.scipy.org/doc/scipy/reference/interpolate.html#module-scipy.interpolate
http://docs.scipy.org/doc/scipy/reference/io.html#module-scipy.io
http://docs.scipy.org/doc/scipy/reference/linalg.html#module-scipy.linalg
http://docs.scipy.org/doc/scipy/reference/ndimage.html#module-scipy.ndimage
http://docs.scipy.org/doc/scipy/reference/odr.html#module-scipy.odr
http://docs.scipy.org/doc/scipy/reference/optimize.html#module-scipy.optimize
http://docs.scipy.org/doc/scipy/reference/signal.html#module-scipy.signal
http://docs.scipy.org/doc/scipy/reference/sparse.html#module-scipy.sparse
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scipy.spatial Spatial data structures and algorithms 

scipy.special Any special mathematical functions 

scipy.stats Statistics 

Data Structure 

The basic data structure used by SciPy is a multidimensional array provided by the NumPy 

module. NumPy provides some functions for Linear Algebra, Fourier Transforms and 

Random Number Generation, but not with the generality of the equivalent functions in 

SciPy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://docs.scipy.org/doc/scipy/reference/spatial.html#module-scipy.spatial
http://docs.scipy.org/doc/scipy/reference/special.html#module-scipy.special
http://docs.scipy.org/doc/scipy/reference/stats.html#module-scipy.stats
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Standard Python distribution does not come bundled with any SciPy module. A lightweight  

alternative is to install SciPy using the popular Python package installer,  

pip install pandas 

If we install the Anaconda Python package, Pandas will be installed by default. Following 

are the packages and links to install them in different operating systems. 

Windows 

Anaconda (from https://www.continuum.io) is a free Python distribution for the SciPy 

stack. It is also available for Linux and Mac. 

Canopy (https://www.enthought.com/products/canopy/) is available free, as well as for 

commercial distribution with a full SciPy stack for Windows, Linux and Mac. 

Python (x,y): It is a free Python distribution with SciPy stack and Spyder IDE for Windows 

OS. (Downloadable from http://python-xy.github.io/) 

Linux 

Package managers of respective Linux distributions are used to install one or more 

packages in the SciPy stack. 

Ubuntu 

We can use the following path to install Python in Ubuntu. 

sudo apt-get install python-numpy python-scipy python-
matplotlibipythonipython-notebook python-pandas python-sympy python-nose 

Fedora 

We can use the following path to install Python in Fedora. 

sudo yum install numpyscipy python-matplotlibipython python-pandas sympy 
python-nose atlas-devel 

 

 

 

 

2.SciPy – Environment Setup 

https://www.continuum.io/
https://www.enthought.com/products/canopy/
http://python-xy.github.io/
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By default, all the NumPy functions have been available through the SciPy namespace. 

There is no need to import the NumPy functions explicitly, when SciPy is imported. The 

main object of NumPy is the homogeneous multidimensional array. It is a table of elements 

(usually numbers), all of the same type, indexed by a tuple of positive integers. In NumPy , 

dimensions are called as axes. The number of axes is called as rank. 

Now, let us revise the basic functionality of Vectors and Matrices in NumPy. As SciPy is 

built on top of NumPy arrays, understanding of NumPy basics is necessary. As most parts 

of linear algebra deals with matrices only. 

NumPy Vector 

A Vector can be created in multiple ways. Some of them are described below. 

Converting Python array-like objects to NumPy 

Let us consider the following example. 

import numpy as np 

list = [1,2,3,4] 

arr = np.array(list) 

print arr 

The output of the above program will be as follows. 

[1 2 3 4] 

Intrinsic NumPy Array Creation 

NumPy has built-in functions for creating arrays from scratch. Some of these functions are 

explained below. 

Using zeros() 

The zeros(shape) function will create an array filled with 0 values with the specified shape. 

The default dtype is float64. Let us consider the following example. 

import numpy as np 

print np.zeros((2, 3)) 

The output of the above program will be as follows. 

array([[ 0.,  0.,  0.], 

       [ 0.,  0.,  0.]]) 

 

3.SciPy – Basic Functionality 
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Using ones()  

The ones(shape) function will create an array filled with 1 values. It is identical to zeros in 

all the other respects. Let us consider the following example. 

import numpy as np 

print np.ones((2, 3)) 

The output of the above program will be as follows. 

array([[ 1.,  1.,  1.], 

       [ 1.,  1.,  1.]]) 

Using arange() 

The arange() function will create arrays with regularly incrementing values. Let us consider 

the following example. 

import numpy as np 

print np.arange(7) 

The above program will generate the following output. 

array([0, 1, 2, 3, 4, 5, 6]) 

Defining the data type of the values 

Let us consider the following example. 

import numpy as np 

arr = np.arange(2, 10, dtype=np.float) 

print arr 

print "Array Data Type :",arr.dtype 

The above program will generate the following output. 

[ 2.  3.  4.  5.  6.  7.  8.  9.] 

Array Data Type : float64 

Using linspace() 

The linspace() function will create arrays with a specified number of elements, which will 

be spaced equally between the specified beginning and end values. Let us consider the 

following example. 

import numpy as np 

print np.linspace(1., 4., 6) 
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The above program will generate the following output. 

array([ 1. ,  1.6,  2.2,  2.8,  3.4,  4. ]) 

Matrix 

A matrix is a specialized 2-D array that retains its 2-D nature through operations. It has 

certain special operators, such as * (matrix multiplication) and ** (matrix power).  Let us 

consider the following example. 

import numpy as np 

print np.matrix('1 2; 3 4') 

The above program will generate the following output. 

matrix([[1, 2], 

        [3, 4]]) 

Conjugate Transpose of Matrix 

This feature returns the (complex) conjugate transpose of self. Let us consider the 

following example. 

import numpy as np 

mat = np.matrix('1 2; 3 4') 

print mat.H 

The above program will generate the following output. 

matrix([[1, 3], 

        [2, 4]]) 

Transpose of Matrix 

This feature returns the transpose of self. Let us consider the following example. 

import numpy as np 

mat = np.matrix('1 2; 3 4') 

mat.T 

The above program will generate the following output. 

matrix([[1, 3], 

        [2, 4]]) 

When we transpose a matrix, we make a new matrix whose rows are the columns of the 

original. A conjugate transposition, on the other hand, interchanges the row and the 

column index for each matrix element. The inverse of a matrix is a matrix that, if multiplied 

with the original matrix, results in an identity matrix.  
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K-means clustering is a method for finding clusters and cluster centers in a set of 

unlabelled data. Intuitively, we might think of a cluster as – comprising of a group of data 

points, whose inter-point distances are small compared with the distances to points outside 

of the cluster. Given an initial set of K centers, the K-means algorithm iterates the following 

two steps: 

 For each center, the subset of training points (its cluster) that is closer to it is 

identified than any other center. 

 The mean of each feature for the data points in each cluster are computed, and 

this mean vector becomes the new center for that cluster. 

These two steps are iterated until the centers no longer move or the assignments no longer 

change. Then, a new point x can be assigned to the cluster of the closest prototype. The 

SciPy library provides a good implementation of the K-Means algorithm through the cluster 

package. Let us understand how to use it.  

K-Means Implementation in SciPy 

We will understand how to implement K-Means in SciPy. 

Import K-Means 

We will see the implementation and usage of each imported function. 

from SciPy.cluster.vq import kmeans,vq,whiten 

Data generation 

We have to simulate some data to explore the clustering. 

from numpy import vstack,array 

from numpy.random import rand 

 

# data generation with three features 

data = vstack((rand(100,3) + array([.5,.5,.5]),rand(100,3))) 

Now, we have to check for data. The above program will generate the following output. 

array([[  1.48598868e+00,   8.17445796e-01,   1.00834051e+00], 

       [  8.45299768e-01,   1.35450732e+00,   8.66323621e-01], 

       [  1.27725864e+00,   1.00622682e+00,   8.43735610e-01], 

             ……………. 

4.SciPy – Cluster 
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Normalize a group of observations on a per feature basis. Before running K-Means, it is 

beneficial to rescale each feature dimension of the observation set with whitening. Each 

feature is divided by its standard deviation across all observations to give it unit variance.  

Whiten the data 

We have to use the following code to whiten the data. 

# whitening of data 

data = whiten(data) 

Compute K-Means with Three Clusters 

Let us now compute K-Means with three clusters using the following code. 

# computing K-Means with K = 3 (2 clusters) 

centroids,_ = kmeans(data,3) 

The above code performs K-Means on a set of observation vectors forming K clusters. The 

K-Means algorithm adjusts the centroids until sufficient progress cannot be made, i.e. the 

change in distortion, since the last iteration is less than some threshold. Here, we can 

observe the centroid of the cluster by printing the centroids variable using the code given 

below. 

print(centroids) 

The above code will generate the following output. 

print(centroids) 

[[ 2.26034702  1.43924335  1.3697022 ] 

 [ 2.63788572  2.81446462  2.85163854] 

 [ 0.73507256  1.30801855  1.44477558]] 

Assign each value to a cluster by using the code given below. 

# assign each sample to a cluster 

clx,_ = vq(data,centroids) 

The vq function compares each observation vector in the ‘M’ by ‘N’ obs array with the 

centroids and assigns the observation to the closest cluster. It returns the cluster of each 

observation and the distortion. We can check the distortion as well. Let us check the cluster 

of each observation using the following code. 

# check clusters of observation 

print clx 
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The above code will generate the following output. 

array([1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 2, 0,2, 
0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 

0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0,  

0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 

0, 0, 1, 0, 0, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 0, 2, 2, 2, 2,  

2, 0, 0, 2, 2, 2, 1, 0, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 1,  

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2,  

2, 0, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 

1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2], dtype=int32) 

The distinct values 0, 1, 2 of the above array indicate the clusters. 
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SciPy constants package provides a wide range of constants, which are used in the general 

scientific area. 

SciPy Constants Package 

The scipy.constants package provides various constants. We have to import the 

required constant and use them as per the requirement. Let us see how these constant 

variables are imported and used. 

To start with, let us compare the ‘pi’ value by considering the following example. 

#Import pi constant from both the packages 

from scipy.constants import pi 

from math import pi 

 

print("sciPy - pi = %.16f"%scipy.constants.pi)  

print("math - pi = %.16f"%math.pi)  

The above program will generate the following output. 

sciPy - pi = 3.1415926535897931 

math - pi = 3.1415926535897931 

List of Constants Available 

The following tables describe in brief the various constants. 

Mathematical Constants 

The following table lists the most commonly used mathematical constants. 

Sr. 

No. 

Constant Description 

1 pi pi 

2 golden Golden Ratio 

 

 

5.SciPy – Constants  
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Physical Constants 

The following table lists the most commonly used physical constants. 

Sr. 

No. 

Constant Description 

1 c Speed of light in vacuum 

2 speed_of_light Speed of light in vacuum 

3 h Planck constant 

4 Planck Planck constant h 

5 G Newton’s gravitational constant 

6 e Elementary charge 

7 R Molar gas constant 

8 Avogadro Avogadro constant 

9 k Boltzmann constant 

10 electron_mass(OR) m_e Electronic mass 

11 proton_mass (OR) m_p Proton mass 

12 neutron_mass(OR)m_n Neutron mass 
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Units 

The following table has the list of SI units. 

Sr. 

No. 

Unit Value 

1 milli 0.001 

2 micro 1e-06 

3 kilo 1000 

These units range from yotta, zetta, exa, peta, tera ……kilo, hector, …nano, pico, … to 

zepto. 

Other Important Constants 

The following table lists other important constants used in SciPy. 

Sr. 

No. 

Unit Value 

1 gram 0.001 kg 

2 atomic mass Atomic mass constant 

3 degree Degree in radians 

4 minute One minute in seconds 

5 day One day in seconds 

6 inch One inch in meters 

7 micron One micron in meters 

8 light_year One light-year in meters 

9 atm Standard atmosphere in pascals 

10 acre One acre in square meters 
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11 liter One liter in cubic meters 

12 gallon One gallon in cubic meters 

13 kmh Kilometers per hour in meters per seconds 

14 degree_Fahrenheit One Fahrenheit in kelvins 

15 eV One electron volt in joules 

16 hp One horsepower in watts 

17 dyn One dyne in newtons 

18 lambda2nu Convert wavelength to optical frequency 

 

Remembering all of these are a bit tough. The easy way to get which key is for which 

function is with the scipy.constants.find() method. Let us consider the following 

example. 

import scipy.constants 

res = scipy.constants.physical_constants["alpha particle mass"]  

print res 

The above program will generate the following output. 

['alpha particle mass', 

 'alpha particle mass energy equivalent', 

 'alpha particle mass energy equivalent in MeV', 

 'alpha particle mass in u', 

 'electron to alpha particle mass ratio'] 

This method returns the list of keys, else nothing if the keyword does not match. 
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Fourier Transformation is computed on a time domain signal to check its behavior in 

the frequency domain. Fourier transformation finds its application in disciplines such as  

signal and noise processing, image processing, audio signal processing, etc. SciPy offers 

the fftpack module, which lets the user compute fast Fourier transforms.  

Following is an example of a sine function, which will be used to calculate Fourier transform 

using the fftpack module. 

Fast Fourier Transform 

Let us understand what fast Fourier transform is in detail. 

One Dimensional Discrete Fourier Transform 

The FFT y[k] of length N of the length-N sequence x[n] is calculated by fft() and the 

inverse transform is calculated using ifft(). Let us consider the following example. 

#Importing the fft and inverse fft functions from fftpackage 

from scipy.fftpack import fft 

 

#create an array with random n numbers 

x = np.array([1.0, 2.0, 1.0, -1.0, 1.5]) 

 

#Applying the fft function 

y = fft(x) 

print y 

The above program will generate the following output. 

[ 4.50000000+0.j          2.08155948-1.65109876j -1.83155948+1.60822041j 

 -1.83155948-1.60822041j  2.08155948+1.65109876j] 

Let us look at another example. 

#FFT is already in the workspace, using the same workspace to for inverse 
transform 

yinv = ifft(y) 

print yinv 

The above program will generate the following output. 

[ 1.0+0.j  2.0+0.j  1.0+0.j -1.0+0.j  1.5+0.j] 

6.SciPy – Fftpack 
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The scipy.fftpack module allows computing fast Fourier transforms. As an illustration, a 

(noisy) input signal may look as follows: 

import numpy as np 

time_step = 0.02 

period = 5. 

time_vec = np.arange(0, 20, time_step) 

sig = np.sin(2 * np.pi / period * time_vec) + 0.5 
*np.random.randn(time_vec.size) 

print sig.size 

We are creating a signal with a time step of 0.02 seconds. The last statement prints the 

size of the signal sig. The output would be as follows: 

1000 

We do not know the signal frequency; we only know the sampling time step of the signal 

sig. The signal is supposed to come from a real function, so the Fourier transform will be 

symmetric. The scipy.fftpack.fftfreq() function will generate the sampling frequencies 

and scipy.fftpack.fft() will compute the fast Fourier transform. 

Let us understand this with the help of an example. 

from scipy import fftpack 

sample_freq = fftpack.fftfreq(sig.size, d=time_step) 

sig_fft = fftpack.fft(sig) 

print sig_fft 

The above program will generate the following output. 

array([ 25.45122234 +0.00000000e+00j,   6.29800973 +2.20269471e+00j, 

        11.52137858 -2.00515732e+01j,   1.08111300 +1.35488579e+01j, 

              …….]) 

Discrete Cosine Transform 

A Discrete Cosine Transform (DCT) expresses a finite sequence of data points in terms 

of a sum of cosine functions oscillating at different frequencies. SciPy provides a DCT with 

the function dct and a corresponding IDCT with the function idct. Let us consider the 

following example. 

from scipy.fftpack import  dct 

print dct(np.array([4., 3., 5., 10., 5., 3.])) 
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The above program will generate the following output. 

array([ 60.        ,  -3.48476592, -13.85640646,  11.3137085 , 

         6.        ,  -6.31319305]) 

The inverse discrete cosine transform reconstructs a sequence from its discrete cosine 

transform (DCT) coefficients. The idct function is the inverse of the dct function. Let us 

understand this with the following example. 

from scipy.fftpack import  dct 

print idct(np.array([4., 3., 5., 10., 5., 3.])) 

The above program will generate the following output. 

array([ 39.15085889, -20.14213562,  -6.45392043,   7.13341236, 

         8.14213562,  -3.83035081]) 
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When a function cannot be integrated analytically, or is very difficult to integrate 

analytically, one generally turns to numerical integration methods. SciPy has a number of 

routines for performing numerical integration. Most of them are found in the same  

scipy.integrate library. The following table lists some commonly used functions. 

 

Function Description 

quad Single integration 

dblquad Double integration 

tplquad Triple integration 

nquad -fold multiple integration 

fixed_quad Gaussian quadrature, order n 

quadrature Gaussian quadrature to tolerance 

romberg Romberg integration 

trapz Trapezoidal rule 

cumtrapz Trapezoidal rule to cumulatively compute integral 

simps Simpson’s rule 

romb Romberg integration 

polyint Analytical polynomial integration (NumPy) 

poly1d Helper function for polyint (NumPy) 

 

 

 

 

7.SciPy – Integrate 
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Single Integrals 

The Quad function is the workhorse of SciPy’s integration functions. Numerical integration 

is sometimes called quadrature, hence the name. It is normally the default choice for 

performing single integrals of a function  over a given fixed range from  to . 

 

The general form of quad is scipy.integrate.quad(f, a, b), Where ‘f’ is the name of the 

function to be integrated. Whereas, ‘a’ and ‘b’ are the lower and upper limits, respectively. 

Let us see an example of the Gaussian function, integrated over a range of 0 and 1. 

We first need to define the function  , this can be done using a lambda 

expression and then call the quad method on that function. 

import scipy.integrate 

from numpy import exp 

f= lambda x:exp(-x**2) 

i = scipy.integrate.quad(f, 0, 1) 

print i 

The above program will generate the following output. 

(0.7468241328124271, 8.291413475940725e-15) 

The quad function returns the two values, in which the first number is the value of integral 

and the second value is the estimate of the absolute error in the value of integral.  

Note: Since quad requires the function as the first argument, we cannot directly pass exp 

as the argument. The Quad function accepts positive and negative infinity as limit s . 

The Quad function can integrate standard predefined NumPy functions of a single variable, 

such as exp, sin and cos. 

Multiple Integrals 

The mechanics for double and triple integration have been wrapped up into the 

functions dblquad, tplquad and nquad. These functions integrate four or six arguments, 

respectively. The limits of all inner integrals need to be defined as functions. 

Double Integrals 

The general form of dblquad is scipy.integrate.dblquad(func, a, b, gfun, hfun). Where, 

func is the name of the function to be integrated, ‘a’ and ‘b’ are the lower and upper limit s 

of the x variable, respectively, while gfun and hfun are the names of the functions that 

define the lower and upper limits of the y variable. 
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As an example, let us perform the double integral method. 

                                                 

We define the functions f, g, and h, using the lambda expressions. Note that even if g 

and h are constants, as they may be in many cases, they must be defined as functions, 

as we have done here for the lower limit. 

import scipy.integrate 

from numpy import exp 

from math import sqrt 

f = lambda x, y : 16*x*y 

g = lambda x : 0 

h = lambda y : sqrt(1-4*y**2) 

i = scipy.integrate.dblquad(f, 0, 0.5, g, h) 

print i 

The above program will generate the following output. 

(0.5, 1.7092350012594845e-14) 

In addition to the routines described above, scipy.integrate has a number of other 

integration routines, including nquad, which performs -fold multiple integration, as well 

as other routines that implement various integration algorithms. However, 

quad and dblquad will meet most of our needs for numerical integration. 
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In this chapter, we will discuss how interpolation helps in SciPy. 

What is Interpolation? 

Interpolation is the process of finding a value between two points on a line or a curve. To 

help us remember what it means, we should think of the first part of the word, 'inter,' as 

meaning 'enter,' which reminds us to look 'inside' the data we originally had. This tool, 

interpolation, is not only useful in statistics, but is also useful in science, business, or when 

there is a need to predict values that fall within two existing data points. 

Let us create some data and see how this interpolat ion can be done using the 

scipy.interpolate package. 

import numpy as np 

from scipy import interpolate 

import matplotlib.pyplot as plt 

x = np.linspace(0, 4, 12) 

y = np.cos(x**2/3+4) 

print x,y  

The above program will generate the following output. 

(array([ 0.        ,  0.36363636,  0.72727273,  1.09090909,  1.45454545, 

         1.81818182,  2.18181818,  2.54545455,  2.90909091,  3.27272727, 

         3.63636364,  4.        ]), 

 array([-0.65364362, -0.61966189, -0.51077021, -0.31047698, -0.00715476, 

         0.37976236,  0.76715099,  0.99239518,  0.85886263,  0.27994201, 

        -0.52586509, -0.99582185])) 

Now, we have two arrays. Assuming those two arrays as the two dimensions of the points 

in space, let us plot using the following program and see how they look like. 

plt.plot(x, y,’o’) 

plt.show() 

The above program will generate the following output. 

8.SciPy – Interpolate 
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1-D Interpolation 

The interp1d class in the scipy.interpolate is a convenient method to create a function 

based on fixed data points, which can be evaluated anywhere within the domain defined 

by the given data using linear interpolation. 

By using the above data, let us create a interpolate function and draw a new interpolated 

graph. 

f1 = interp1d(x, y,kind='linear') 

f2 = interp1d(x, y, kind='cubic') 

Using the interp1d function, we created two functions f1 and f2. These func tions, for a 

given input x returns y. The third variable kind represents the type of the interpolation 

technique. 'Linear', 'Nearest', 'Zero', 'Slinear', 'Quadratic', 'Cubic' are a few techniques of 

interpolation. 

Now, let us create a new input of more length to see the clear difference of interpolation. 

We will use the same function of the old data on the new data. 

xnew = np.linspace(0, 4,30) 

plt.plot(x, y, 'o', xnew, f(xnew), '-', xnew, f2(xnew), '--') 

plt.legend(['data', 'linear', 'cubic','nearest'], loc='best') 

plt.show() 
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The above program will generate the following output. 

 

Splines 

To draw smooth curves through data points, drafters once used thin flexible strips of wood, 

hard rubber, metal or plastic called mechanical splines. To use a mechanical spline, pins 

were placed at a judicious selection of points along a curve in a design, and then the spline 

was bent, so that it touched each of these pins.  

Clearly, with this construction, the spline interpolates the curve at these pins. It can be 

used to reproduce the curve in other drawings. The points where the pins are located is 

called knots. We can change the shape of the curve defined by the spline by adjusting the 

location of the knots.  

Univariate Spline 

One-dimensional smoothing spline fits a given set of data points. The UnivariateSpline 

class in scipy.interpolate is a convenient method to create a function, based on fixed data 

points class – scipy.interpolate.UnivariateSpline(x, y, w=None, bbox=[None, None], k=3, 

s=None, ext=0, check_finite=False). 

Parameters: Following are the parameters of a Univariate Spline. 

 This fits a spline y = spl(x) of degree k to the provided x, y data.  

 ‘w’ – Specifies the weights for spline fitting. Must be positive. If none (default), 

weights are all equal. 

 ‘s’ – Specifies the number of knots by specifying a smoothing condition. 

 ‘k’ – Degree of the smoothing spline. Must be <= 5. Default is k=3, a cubic spline.  

 Ext – Controls the extrapolation mode for elements not in the interval defined by 

the knot sequence. 
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o if ext=0 or ‘extrapolate’, returns the extrapolated value. 

o if ext=1 or ‘zero’, returns 0 

o if ext=2 or ‘raise’, raises a ValueError 

o if ext=3 of ‘const’, returns the boundary value. 

 check_finite – Whether to check that the input arrays contain only finite numbers. 

Let us consider the following example. 

import matplotlib.pyplot as plt 

from scipy.interpolate import UnivariateSpline 

x = np.linspace(-3, 3, 50) 

y = np.exp(-x**2) + 0.1 * np.random.randn(50) 

plt.plot(x, y, 'ro', ms=5) 

plt.show() 

Use the default value for the smoothing parameter. 

 

 

spl = UnivariateSpline(x, y) 

xs = np.linspace(-3, 3, 1000) 

plt.plot(xs, spl(xs), 'g', lw=3) 

plt.show() 
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Manually change the amount of smoothing. 

 

spl.set_smoothing_factor(0.5) 

plt.plot(xs, spl(xs), 'b', lw=3) 

plt.show() 
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The Scipy.io (Input and Output) package provides a wide range of functions to work around 

with different format of files. Some of these formats are – 

 Matlab 

 IDL 

 Matrix Market 

 Wave 

 Arff   

 Netcdf, etc.  

Let us discuss in detail about the most commonly used file formats: 

MATLAB 

Following are the functions used to load and save a .mat file. 

Sr. 

No. 

Function Description 

1 loadmat Loads a MATLAB file 

2 savemat Saves a MATLAB file 

3 whosmat Lists variables inside a MATLAB file 

Let us consider the following example. 

import scipy.io as sio  

import numpy as np 

#Save a mat file 

vect = np.arange(10) 

sio.savemat('array.mat', {'vect':vect}) 

 

#Now Load the File 

mat_file_content = sio.loadmat(‘array.mat’) 

 

Print mat_file_content 

 

9.SciPy – Input & Output 
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The above program will generate the following output. 

{'vect': array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]), '__version__': '1.0', 
'__header__': 'MATLAB 5.0 MAT-file Platform: posix, Created on: Sat Sep 30 
09:49:32 2017', '__globals__': []} 

We can see the array along with the Meta information. If we want to inspect the contents 

of a MATLAB file without reading the data into memory, use the whosmat command as 

shown below. 

import scipy.io as sio  

mat_file_content = sio.whosmat(‘array.mat’) 

print mat_file_content 

The above program will generate the following output. 

[('vect', (1, 10), 'int64')] 
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SciPy is built using the optimized ATLAS LAPACK and BLAS libraries. It has very fast 

linear algebra capabilities. All of these linear algebra routines expect an object that can be 

converted into a two-dimensional array. The output of these routines is also a 

two-dimensional array. 

SciPy.linalg vs NumPy.linalg 

A scipy.linalg contains all the functions that are in numpy.linalg. Additionally, scipy.linalg 

also has some other advanced functions that are not in numpy.linalg. Another advantage 

of using scipy.linalg over numpy.linalg is that it is always compiled with BLAS/LAPACK 

support, while for NumPy this is optional. Therefore, the SciPy version might be faster 

depending on how NumPy was installed. 

Linear Equations 

The scipy.linalg.solve feature solves the linear equation a*x + b*y = Z, for the unknown 

x, y values. 

As an example, assume that it is desired to solve the following simultaneous equations. 

x+3y+5z = 10 

2x+5y+z = 8 

2x+3y+8z = 3 

To solve the above equation for the x, y, z values, we can find the solution vector using a 

matrix inverse as shown below. 

 

However, it is better to use the linalg.solve command, which can be faster and more 

numerically stable. 

The solve function takes two inputs ‘a’ and ‘b’ in which ‘a’ represents the coefficients and 

‘b’ represents the respective right hand side value and returns the solution array. 

Let us consider the following example. 

#importing the scipy and numpy packages 

from scipy import linalg 

import numpy as np 

 

#Declaring the numpy arrays  

10. SciPy – Linalg 
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a = np.array([[3, 2, 0], [1, -1, 0], [0, 5, 1]]) 

b = np.array([2, 4, -1]) 

 

#Passing the values to the solve function 

x = linalg.solve(a, b) 

 

#printing the result array 

print x  

The above program will generate the following output. 

array([ 2., -2.,  9.]) 

Finding a Determinant 

The determinant of a square matrix A is often denoted as |A| and is a quantity often used 

in linear algebra. In SciPy, this is computed using the det() function. It takes a matrix as 

input and returns a scalar value. 

Let us consider the following example. 

#importing the scipy and numpy packages 

from scipy import linalg 

import numpy as np 

 

#Declaring the numpy array 

A = np.array([[1,2],[3,4]]) 

 

#Passing the values to the det function 

x = linalg.det(A) 

 

#printing the result 

print x  

The above program will generate the following output. 

-2.0 
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Eigenvalues and Eigenvectors 

The eigenvalue-eigenvector problem is one of the most commonly employed linear algebra 

operations. We can find the Eigen values (λ) and the corresponding Eigen vectors (v) of a 

square matrix (A) by considering the following relation - 

Av=λv 

scipy.linalg.eig computes the eigenvalues from an ordinary or generalized eigenvalue 

problem. This function returns the Eigen values and the Eigen vectors. 

Let us consider the following example. 

#importing the scipy and numpy packages 

from scipy import linalg 

import numpy as np 

 

#Declaring the numpy array 

A = np.array([[1,2],[3,4]]) 

 

#Passing the values to the eig function 

l, v = linalg.eig(A) 

 

#printing the result for eigen values 

print l 

 

#printing the result for eigen vectors 

print v 

The above program will generate the following output. 

array([-0.37228132+0.j,  5.37228132+0.j])  #--Eigen Values 

 

array([[-0.82456484, -0.41597356],         #--Eigen Vectors 

       [ 0.56576746, -0.90937671]]) 

Singular Value Decomposition 

A Singular Value Decomposition (SVD) can be thought of as an extension of the eigenvalue 

problem to matrices that are not square. 

The scipy.linalg.svd factorizes the matrix ‘a’ into two unitary matrices ‘U’ and ‘Vh’ and a 

1-D array ‘s’ of singular values (real, non-negative) such that a == U*S*Vh, where ‘S’ is 

a suitably shaped matrix of zeros with the main diagonal ‘s’. 
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Let us consider the following example. 

#importing the scipy and numpy packages 

from scipy import linalg 

import numpy as np 

 

#Declaring the numpy array 

a = np.random.randn(3, 2) + 1.j*np.random.randn(3, 2) 

 

#Passing the values to the eig function 

U, s, Vh = linalg.svd(a) 

 

# printing the result  

print U, Vh, s 

The above program will generate the following output. 

(array([[ 0.54828424-0.23329795j, -0.38465728+0.01566714j, 

         -0.18764355+0.67936712j], 

        [-0.27123194-0.5327436j , -0.57080163-0.00266155j, 

         -0.39868941-0.39729416j], 

        [ 0.34443818+0.4110186j , -0.47972716+0.54390586j, 

          0.25028608-0.35186815j]]), 

 array([ 3.25745379,  1.16150607]), 

 array([[-0.35312444+0.j        ,  0.32400401+0.87768134j], 

        [-0.93557636+0.j        , -0.12229224-0.33127251j]])) 
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The SciPy ndimage submodule is dedicated to image processing. Here, ndimage means an 

n-dimensional image. 

Some of the most common tasks in image processing are as follows: 

 Input/Output, displaying images 

 Basic manipulations: Cropping, flipping, rotating, etc. 

 Image filtering: De-noising, sharpening, etc. 

 Image segmentation: Labeling pixels corresponding to different objects 

 Classification 

 Feature extraction 

 Registration 

Let us discuss how some of these can be achieved using SciPy. 

Opening and Writing to Image Files 

The misc package in SciPy comes with some images. We use those images to learn the 

image manipulations. Let us consider the following example. 

from scipy import misc 

f = misc.face() 

misc.imsave('face.png', f) # uses the Image module (PIL) 

 

import matplotlib.pyplot as plt 

plt.imshow(f) 

plt.show() 

The above program will generate the following output. 

 

 

11. SciPy – Ndimage 
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Any images in its raw format is the combination of colors represented by the numbers in 

the matrix format. A machine understands and manipulates the images based on those 

numbers only. RGB is a popular way of representation.  

Let us see the statistical information of the above image. 

from scipy import misc 

face = misc.face(gray=False) 

 

print face.mean(), face.max(), face.min() 

The above program will generate the following output. 

110.16274388631184, 255, 0 

Now, we know that the image is made out of numbers, so any change in the value of the 

number alters the original image. Let us perform some geometric transformations on the 

image. The basic geometric operation is cropping. 

from scipy import misc 

face = misc.face(gray=True) 

lx, ly = face.shape 

# Cropping 

crop_face = face[lx / 4: - lx / 4, ly / 4: - ly / 4] 
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import matplotlib.pyplot as plt 

plt.imshow(crop_face) 

plt.show() 

The above program will generate the following output. 

 

We can also perform some basic operations such as turning the image upside down as 

described below. 

# up <-> down flip 

from scipy import misc 

face = misc.face() 

flip_ud_face = np.flipud(face) 

 

import matplotlib.pyplot as plt 

plt.imshow(flip_ud_face) 

plt.show() 
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The above program will generate the following output. 

 

Besides this, we have the rotate() function, which rotates the image with a specified 

angle. 

# rotation 

from scipy import misc,ndimage 

face = misc.face() 

rotate_face = ndimage.rotate(face, 45) 

 

import matplotlib.pyplot as plt 

plt.imshow(rotate_face) 

plt.show() 
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The above program will generate the following output. 

 

Filters 

Let us discuss how filters help in image processing. 

What is filtering in image processing? 

Filtering is a technique for modifying or enhancing an image. For example, you can filter 

an image to emphasize certain features or remove other features. Image processing 

operations implemented with filtering include Smoothing, Sharpening, and Edge 

Enhancement. 

Filtering is a neighborhood operation, in which the value of any given pixel in the output 

image is determined by applying some algorithm to the values of the pixels in the 

neighborhood of the corresponding input pixel. Let us now perform a few operations using 

SciPy ndimage. 
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Blurring 

Blurring is widely used to reduce the noise in the image. We can perform a filter operation 

and see the change in the image. Let us consider the following example. 

from scipy import misc 

face = misc.face() 

blurred_face = ndimage.gaussian_filter(face, sigma=3) 

 

import matplotlib.pyplot as plt 

plt.imshow(blurred_face) 

plt.show() 

The above program will generate the following output. 

 

The sigma value indicates the level of blur on a scale of five. We can see the change on 

the image quality by tuning the sigma value. For more details of blurring, click on  DIP 

(Digital Image Processing) Tutorial. 

 

 

https://www.tutorialspoint.com/dip/concept_of_blurring.htm
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Edge Detection 

Let us discuss how edge detection helps in image processing. 

What is Edge Detection? 

Edge detection is an image processing technique for finding the boundaries of objects 

within images. It works by detecting discontinuities in brightness. Edge detection is used 

for image segmentation and data extraction in areas such as Image Processing, Computer 

Vision and Machine Vision. 

The most commonly used edge detection algorithms include  

 Sobel 

 Canny 

 Prewitt 

 Roberts 

 Fuzzy Logic methods 

Let us consider the following example. 

import scipy.ndimage as nd 

import numpy as np 

 

im = np.zeros((256, 256)) 

im[64:-64, 64:-64] = 1 

im[90:-90,90:-90]=2 

im = ndimage.gaussian_filter(im, 8) 

 

import matplotlib.pyplot as plt 

plt.imshow(im) 

plt.show() 

The above program will generate the following output. 
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The image looks like a square block of colors. Now, we will detect the edges of those 

colored blocks. Here, ndimage provides a function called Sobel to carry out this operation. 

Whereas, NumPy provides the Hypot function to combine the two resultant matrices to 

one.  

Let us consider the following example. 

import scipy.ndimage as nd 

import matplotlib.pyplot as plt 

 

im = np.zeros((256, 256)) 

im[64:-64, 64:-64] = 1 

im[90:-90,90:-90]=2 

im = ndimage.gaussian_filter(im, 8) 

 

sx = ndimage.sobel(im, axis=0, mode='constant') 

sy = ndimage.sobel(im, axis=1, mode='constant') 

sob = np.hypot(sx, sy) 

 

plt.imshow(sob) 
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plt.show() 

 

The above program will generate the following output. 

 

 

 

 



SciPy 

40 

 

The scipy.optimize package provides several commonly used optimization algorithms. 

This module contains the following aspects: 

 Unconstrained and constrained minimization of multivariate scalar functions 

(minimize()) using a variety of algorithms (e.g. BFGS, Nelder-Mead simplex, 

Newton Conjugate Gradient, COBYLA or SLSQP) 

 Global (brute-force) optimization routines (e.g., anneal(), basinhopping()) 

 Least-squares minimization (leastsq()) and curve fitting (curve_fit()) algorithms 

 Scalar univariate functions minimizers (minimize_scalar()) and root finders 

(newton()) 

 Multivariate equation system solvers (root()) using a variety of algorithms (e.g. 

hybrid Powell, Levenberg-Marquardt or large-scale methods such as Newton-

Krylov) 

Unconstrained & Constrained minimization of multivariate scalar functions 

The minimize() function provides a common interface to unconstrained and constrained 

minimization algorithms for multivariate scalar functions in scipy.optimize. To 

demonstrate the minimization function, consider the problem of minimizing the 

Rosenbrock function of the NN variables: 

f(x) = ∑ 100(xi− xi−1
2 )

N−1

i=1

 

The minimum value of this function is 0, which is achieved when xi=1. 

Nelder–Mead Simplex Algorithm  

In the following example, the minimize() routine is used with the Nelder-Mead simplex 

algorithm (method='Nelder-Mead') (selected through the method parameter). Let us 

consider the following example. 

import numpy as np 

from scipy.optimize import minimize 

 

def rosen(x): 

     """The Rosenbrock function""" 

     return sum(100.0*(x[1:]-x[:-1]**2.0)) 

 

x0 = np.array([1.3, 0.7, 0.8, 1.9, 1.2]) 

12. SciPy – Optimize 
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res = minimize(rosen, x0, method='nelder-mead') 

 

print(res.x) 

The above program will generate the following output. 

[  7.93700741e+54  -5.41692163e+53   6.28769150e+53   1.38050484e+55 

  -4.14751333e+54] 

The simplex algorithm is probably the simplest way to minimize a fairly well-behaved 

function. It requires only function evaluations and is a good choice for simple minimizat ion 

problems. However, because it does not use any gradient evaluations, it may take longer 

to find the minimum. 

Another optimization algorithm that needs only funct ion calls to find the minimum is the 

Powell‘s method, which is available by setting method='powell' in the minimize() 

function. 

Least Squares 

Solve a nonlinear least-squares problem with bounds on the variables. Given the residuals 

f(x) (an m-dimensional real function of n real variables) and the loss function rho(s) (a 

scalar function), least_squares find a local minimum of the cost function F(x). Let us 

consider the following example. 

In this example, we find a minimum of the Rosenbrock function without bounds on the 

independent variables. 

#Rosenbrock Function 

def fun_rosenbrock(x): 

     return np.array([10 * (x[1] - x[0]**2), (1 - x[0])]) 

     

from scipy.optimize import least_squares 

input = np.array([2, 2]) 

res = least_squares(fun_rosenbrock, input) 

 

print res 

Notice that, we only provide the vector of the residuals. The algorithm constructs the cost 

function as a sum of squares of the residuals, which gives the Rosenbrock function. The 

exact minimum is at x =[1.0,1.0]. 
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The above program will generate the following output. 

active_mask: array([ 0.,  0.]) 

        cost: 9.8669242910846867e-30 

         fun: array([  4.44089210e-15,   1.11022302e-16]) 

        grad: array([ -8.89288649e-14,   4.44089210e-14]) 

         jac: array([[-20.00000015,10.],[ -1.,0.]]) 

     message: '`gtol` termination condition is satisfied.' 

        nfev: 3 

        njev: 3 

  optimality: 8.8928864934219529e-14 

      status: 1 

     success: True 

           x: array([ 1.,  1.]) 

Root finding 

Let us understand how root finding helps in SciPy. 

Scalar functions 

If one has a single-variable equation, there are four different root-finding algorithms, 

which can be tried. Each of these algorithms require the endpoints of an interval in which 

a root is expected (because the function changes signs). In general, brentq is the best 

choice, but the other methods may be useful in certain circumstances or for academic  

purposes. 

Fixed-point solving 

A problem closely related to finding the zeros of a function is the problem of finding a fixed  

point of a function. A fixed point of a function is the point at which evaluation of the 

function returns the point: g(x)=x. Clearly the fixed point of gg is the root of f(x)=g(x)−x. 

Equivalently, the root of ff is the fixed_point of g(x)=f(x)+x. The routine fixed_point  

provides a simple iterative method using the Aitkens sequence acceleration to estimate 

the fixed point of gg, if a starting point is given. 

Sets of equations 

Finding a root of a set of non-linear equations can be achieved using the root() function. 

Several methods are available, amongst which hybr (the default) and lm, respectively 

use the hybrid method of Powell and the Levenberg-Marquardt method from the 

MINPACK. 

The following example considers the single-variable transcendental equation. 

x^2+2cos(x)=0 
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A root of which can be found as follows: 

import numpy as np 

from scipy.optimize import root 

def func(x): 

     return x*2 + 2 * np.cos(x) 

sol = root(func, 0.3) 

print sol 

The above program will generate the following output. 

    fjac: array([[-1.]]) 

     fun: array([  2.22044605e-16]) 

 message: 'The solution converged.' 

    nfev: 10 

     qtf: array([ -2.77644574e-12]) 

       r: array([-3.34722409]) 

  status: 1 

 success: True 

       x: array([-0.73908513]) 
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All of the statistics functions are located in the sub-package scipy.stats and a fairly 

complete listing of these functions can be obtained using info(stats) function. A list of 

random variables available can also be obtained from the docstring for the stats 

sub-package. This module contains a large number of probability distributions as well as 

a growing library of statistical functions. 

Each univariate distribution has its own subclass as described in the following table: 

Sr. 

No. 

Class Description 

1 rv_continuous A generic continuous random variable class meant for 

subclassing 

2 rv_discrete A generic discrete random variable class meant for 

subclassing 

3 rv_histogram Generates a distribution given by a histogram 

Normal Continuous Random Variable 

A probability distribution in which the random variable X can take any value is continuous 

random variable. The location (loc) keyword specifies the mean. The scale (scale) keyword 

specifies the standard deviation. 

As an instance of the rv_continuous class, norm object inherits from it a collection of 

generic methods and completes them with details specific for this particular distribution. 

To compute the CDF at a number of points, we can pass a list or a NumPy array. Let us 

consider the following example. 

from scipy.stats import norm 

import numpy as np 

print norm.cdf(np.array([1,-1., 0, 1, 3, 4, -2, 6])) 

The above program will generate the following output. 

array([ 0.84134475,  0.15865525,  0.5       ,  0.84134475,  0.9986501 , 

        0.99996833,  0.02275013,  1.        ]) 
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To find the median of a distribution, we can use the Percent Point Function (PPF), which is 

the inverse of the CDF. Let us understand by using the following example. 

from scipy.stats import norm 

print norm.ppf(0.5) 

The above program will generate the following output. 

0.0 

To generate a sequence of random variates, we should use the size keyword argument , 

which is shown in the following example. 

from scipy.stats import norm 

print norm.rvs(size=5) 

The above program will generate the following output. 

array([ 0.20929928, -1.91049255,  0.41264672, -0.7135557 , -0.03833048]) 

The above output is not reproducible. To generate the same random numbers, use the 

seed function. 

Uniform Distribution 

A uniform distribution can be generated using the uniform function. Let us consider the 

following example. 

from scipy.stats import uniform 

print uniform.cdf([0, 1, 2, 3, 4, 5], loc = 1, scale = 4) 

The above program will generate the following output. 

array([ 0.  ,  0.  ,  0.25,  0.5 ,  0.75,  1.  ]) 

Build Discrete Distribution 

Let us generate a random sample and compare the observed frequencies with the 

probabilities. 

Binomial Distribution 

As an instance of the rv_discrete class, the binom object inherits from it a collection 

of generic methods and completes them with details specific for this particular distribution. 

Let us consider the following example. 

from scipy.stats import uniform 

print uniform.cdf([0, 1, 2, 3, 4, 5], loc = 1, scale = 4) 
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The above program will generate the following output. 

array([ 0.  ,  0.  ,  0.25,  0.5 ,  0.75,  1.  ]) 

Descriptive Statistics 

The basic stats such as Min, Max, Mean and Variance takes the NumPy array as input and 

returns the respective results. A few basic statistical functions available in the scipy.stats 

package are described in the following table. 

Sr. 

No. 
Function Description 

1 describe() 
Computes several descriptive statistics of the passed 

array 

2 gmean() Computes geometric mean along the specified axis 

3 hmean() Calculates the harmonic mean along the specified axis 

4 kurtosis() Computes the kurtosis 

5 mode() Returns the modal value 

6 skew() Tests the skewness of the data 

7 f_oneway() Performs a 1-way ANOVA 

8 iqr() 
Computes the interquartile range of the data along the 

specified axis 

9 zscore() 
Calculates the z score of each value in the sample, 

relative to the sample mean and standard deviation 

10 sem() 
Calculates the standard error of the mean (or standard 

error of measurement) of the values in the input array 
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Several of these functions have a similar version in the scipy.stats.mstats, which work 

for masked arrays. Let us understand this with the example given below. 

from scipy import stats 

import numpy as np 

x = np.array([1,2,3,4,5,6,7,8,9]) 

print x.max(),x.min(),x.mean(),x.var() 

The above program will generate the following output. 

(9, 1, 5.0, 6.666666666666667) 

T-test 

Let us understand how T-test is useful in SciPy. 

ttest_1samp 

Calculates the T-test for the mean of ONE group of scores. This is a two-sided test for the 

null hypothesis that the expected value (mean) of a sample of independent  

observations ‘a’ is equal to the given population mean, popmean. Let us consider the 

following example. 

from scipy import stats 

rvs = stats.norm.rvs(loc=5, scale=10, size=(50,2)) 

print stats.ttest_1samp(rvs,5.0) 

The above program will generate the following output. 

Ttest_1sampResult(statistic=array([-1.40184894,  2.70158009]),  

pvalue=array([ 0.16726344,  0.00945234])) 

Comparing two samples 

In the following examples, there are two samples, which can come either from the same 

or from different distribution, and we want to test whether these samples have the same 

statistical properties. 

ttest_ind: Calculates the T-test for the means of two independent samples of scores. This 

is a two-sided test for the null hypothesis that two independent samples have identical 

average (expected) values. This test assumes that the populations have identical variances 

by default. 
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We can use this test, if we observe two independent samples from the same or different 

population. Let us consider the following example. 

from scipy import stats 

rvs1 = stats.norm.rvs(loc=5,scale=10,size=500) 

rvs2 = stats.norm.rvs(loc=5,scale=10,size=500) 

print stats.ttest_ind(rvs1,rvs2) 

The above program will generate the following output. 

Ttest_indResult(statistic=-0.67406312233650278, pvalue=0.50042727502272966) 

You can test the same with a new array of the same length, but with a varied mean. Use 

a different value in loc and test the same. 
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CSGraph stands for Compressed Sparse Graph, which focuses on Fast graph algorithms 

based on sparse matrix representations. 

Graph Representations 

To begin with, let us understand what a sparse graph is and how it helps in graph 

representations. 

What exactly is a sparse graph? 

A graph is just a collection of nodes, which have links between them. Graphs can represent  

nearly anything: social network connections, where each node is a person and is connected 

to acquaintances; images, where each node is a pixel and is connected to neighboring 

pixels; points in a high-dimensional distribution, where each node is connected to its 

nearest neighbors; and practically anything else you can imagine. 

One very efficient way to represent graph data is in a sparse matrix: let us call it G. The 

matrix G is of size N x N, and G[i, j] gives the value of the connection between node ‘i' and 

node ‘j’. A sparse graph contains mostly zeros: that is, most nodes have only a few 

connections. This property turns out to be true in most cases of interest.  

The creation of the sparse graph submodule was motivated by several algorithms used in 

scikit-learn that included the following: 

 Isomap: A manifold learning algorithm, which requires finding the shortest paths 

in a graph. 

 Hierarchical clustering: A clustering algorithm based on a minimum spanning 

tree. 

 Spectral Decomposition: A projection algorithm based on sparse graph 

laplacians. 

As a concrete example, imagine that we would like to represent the following undirected 

graph: 

 

14. SciPy – CSGraph 
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This graph has three nodes, where node 0 and 1 are connected by an edge of weight 2, 

and nodes 0 and 2 are connected by an edge of weight 1. We can construct the dense, 

masked and sparse representations as shown in the following example, keeping in mind 

that an undirected graph is represented by a symmetric matrix. 

G_dense = np.array([[0, 2, 1], 

                     [2, 0, 0], 

                     [1, 0, 0]]) 

G_masked = np.ma.masked_values(G_dense, 0) 

from scipy.sparse import csr_matrix 

G_sparse = csr_matrix(G_dense) 

print G_sparse.data 

The above program will generate the following output. 

array([2, 1, 2, 1]) 

 

This is identical to the previous graph, except nodes 0 and 2 are connected by an edge of 

zero weight. In this case, the dense representation above leads to ambiguities: how can 

non-edges be represented, if zero is a meaningful value. In this case, either a masked or 

a sparse representation must be used to eliminate the ambiguity. 

Let us consider the following example. 

from scipy.sparse.csgraph import csgraph_from_dense 

G2_data = np.array([[np.inf, 2,      0     ], 

                     [2,      np.inf, np.inf], 

                     [0,      np.inf, np.inf]]) 

G2_sparse = csgraph_from_dense(G2_data, null_value=np.inf) 

print G2_sparse.data 
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The above program will generate the following output. 

array([ 2.,  0.,  2.,  0.]) 

Word ladders using sparse graphs 

Word ladders is a game invented by Lewis Carroll, in which words are linked by changing 

a single letter at each step. For example: 

APE -> APT -> AIT -> BIT -> BIG -> BAG -> MAG -> MAN 

Here, we have gone from "APE" to "MAN" in seven steps, changing one letter each time. 

The question is - Can we find a shorter path between these words using the same rule ? 

This problem is naturally expressed as a sparse graph problem. The nodes will correspond 

to individual words, and we will create connections between words that differ by at the 

most – one letter. 

Obtaining a List of Words 

First, of course, we must obtain a list of valid words. I am running Mac, and Mac has a 

word dictionary at the location given in the following code block. If you are on a different  

architecture, you may have to search a bit to find your system dictionary.  

wordlist = open('/usr/share/dict/words').read().split() 

print len(wordlist) 

The above program will generate the following output. 

235886 

We now want to look at words of length 3, so let us select just those words of the correct 

length. We will also eliminate words, which start with upper case (proper nouns) or contain 

non-alpha-numeric characters such as apostrophes and hyphens. Finally, we will make 

sure everything is in lower case for a comparison later on. 

word_list = [word for word in word_list if len(word) == 3] 

word_list = [word for word in word_list if word[0].islower()] 

word_list = [word for word in word_list if word.isalpha()] 

word_list = map(str.lower, word_list) 

print len(word_list) 

The above program will generate the following output. 

1135 
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Now, we have a list of 1135 valid three-letter words (the exact number may change 

depending on the particular list used). Each of these words will become a node in our 

graph, and we will create edges connecting the nodes associated with each pair of words, 

which differs by only one letter. 

import numpy as np 

word_list = np.asarray(word_list) 

word_list.dtype 

 

word_list.sort() 

 

word_bytes = np.ndarray((word_list.size, word_list.itemsize), 

                        dtype='int8', 

                        buffer=word_list.data) 

print word_bytes.shape 

The above program will generate the following output. 

(1135, 3) 

We will use the Hamming distance between each point to determine, which pairs of words 

are connected. The Hamming distance measures the fraction of entries between two 

vectors, which differ: any two words with a hamming distance equal to 1/N1/N, 

where NN is the number of letters, which are connected in the word ladder. 

from scipy.spatial.distance import pdist, squareform 

from scipy.sparse import csr_matrix 

hamming_dist = pdist(word_bytes, metric='hamming') 

graph = csr_matrix(squareform(hamming_dist < 1.5 / word_list.itemsize))  

When comparing the distances, we do not use equality because this can be unstable for 

floating point values. The inequality produces the desired result as long as no two entries 

of the word list are identical. Now, that our graph is set up, we will use the shortest path 

search to find the path between any two words in the graph. 

i1 = word_list.searchsorted('ape') 

i2 = word_list.searchsorted('man') 

print word_list[i1],word_list[i2] 

The above program will generate the following output. 

ape, man 
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We need to check that these match, because if the words are not in the list there will be 

an error in the output. Now, all we need is to find the shortest path between these two 

indices in the graph. We will use dijkstra’s algorithm, because it allows us to find the path 

for just one node. 

from scipy.sparse.csgraph import dijkstra 

distances, predecessors = dijkstra(graph, indices=i1, 
return_predecessors=True) 

print distances[i2] 

The above program will generate the following output. 

5.0 

Thus, we see that the shortest path between ‘ape’ and ‘man’ contains only five steps. We 

can use the predecessors returned by the algorithm to reconstruct this path. 

path = [] 

i = i2 

while i != i1: 

    path.append(word_list[i]) 

    i = predecessors[i] 

path.append(word_list[i1]) 

print path[::-1]i2] 

The above program will generate the following output. 

['ape', 'ope', 'opt', 'oat', 'mat', 'man'] 
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The scipy.spatial package can compute Triangulations, Voronoi Diagrams and Convex 

Hulls of a set of points, by leveraging the Qhull library. Moreover, it contains KDTree 

implementations for nearest-neighbor point queries and utilities for distance 

computations in various metrics. 

Delaunay Triangulations 

Let us understand what Delaunay Triangulations are and how they are used in SciPy. 

What are Delaunay Triangulations? 

In mathematics and computational geometry, a Delaunay triangulation for a given set P 

of discrete points in a plane is a triangulation DT(P) such that no point in P is inside the 

circumcircle of any triangle in DT(P). 

We can the compute the same through SciPy. Let us consider the following example. 

from scipy.spatial import Delaunay 

points = np.array([[0, 4], [2, 1.1], [1, 3], [1, 2]]) 

tri = Delaunay(points) 

 

import matplotlib.pyplot as plt 

plt.triplot(points[:,0], points[:,1], tri.simplices.copy()) 

plt.plot(points[:,0], points[:,1], 'o') 

plt.show() 

The above program will generate the following output. 

 

15. SciPy – Spatial 
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Coplanar Points 

Let us understand what Coplanar Points are and how they are used in SciPy.  

What are Coplanar Points? 

Coplanar points are three or more points that lie in the same plane. Recall that a plane is 

a flat surface, which extends without end in all directions. It is usually shown in math 

textbooks as a four-sided figure. 

Let us see how we can find this using SciPy. Let us consider the following example. 

from scipy.spatial import Delaunay 

points = np.array([[0, 0], [0, 1], [1, 0], [1, 1], [1, 1]]) 

tri = Delaunay(points) 

print tri.coplanar 

The above program will generate the following output. 

array([[4, 0, 3]], dtype=int32) 

This means that point 4 resides near triangle 0 and vertex 3, but is not included in the 

triangulation. 

Convex hulls 

Let us understand what convex hulls are and how they are used in SciPy. 

What are Convex Hulls? 

In mathematics, the convex hull or convex envelope of a set of points X in the 

Euclidean plane or in a Euclidean space (or, more generally, in an affine space over the 

reals) is the smallest convex set that contains X. 

Let us consider the following example to understand it in detail. 

from scipy.spatial import ConvexHull 

points = np.random.rand(10, 2)   # 30 random points in 2-D 

hull = ConvexHull(points) 

 

import matplotlib.pyplot as plt 

plt.plot(points[:,0], points[:,1], 'o') 

for simplex in hull.simplices: 

     plt.plot(points[simplex,0], points[simplex,1], 'k-') 

plt.show() 
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The above program will generate the following output. 
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ODR stands for Orthogonal Distance Regression, which is used in the regression 

studies. Basic linear regression is often used to estimate the relationship between the two 

variables y and x by drawing the line of best fit on the graph. 

The mathematical method that is used for this is known as Least Squares, and aims 

to minimize the sum of the squared error for each point. The key question here is how do 

you calculate the error (also known as the residual) for each point? 

In a standard linear regression, the aim is to predict the Y value from the X value – so the 

sensible thing to do is to calculate the error in the Y values (shown as the gray lines in the 

following image). However, sometimes it is more sensible to take into account the error 

in both X and Y (as shown by the dotted red lines in the following image).  

For example: When you know your measurements of X are uncertain, or when you do not 

want to focus on the errors of one variable over another. 

 

Orthogonal Distance Regression (ODR) is a method that can do this (orthogonal in this 

context means perpendicular – so it calculates errors perpendicular to the line, rather than 

just ‘vertically’).  

 

 

16. SciPy – ODR 
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scipy.odr Implementation for Univariate Regression 

The following example demonstrates scipy.odr implementation for univariate regression. 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy.odr import * 

 

import random 

 

# Initiate some data, giving some randomness using random.random(). 

x = np.array([0, 1, 2, 3, 4, 5]) 

y = np.array([i**2 + random.random() for i in x]) 

 

 

# Define a function (quadratic in our case) to fit the data with. 

def linear_func(p, x): 

  m, c = p 

  return m*x + c 

 

# Create a model for fitting. 

linear_model = Model(linear_func) 

 

# Create a RealData object using our initiated data from above. 

data = RealData(x, y) 

 

# Set up ODR with the model and data. 

odr = ODR(data, linear_model, beta0=[0., 1.]) 

 

# Run the regression. 

out = odr.run() 

 

# Use the in-built pprint method to give us results. 

out.pprint() 
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The above program will generate the following output. 

Beta: [ 5.51846098 -4.25744878] 

Beta Std Error: [ 0.7786442   2.33126407] 

Beta Covariance: [[  1.93150969  -4.82877433] 

 [ -4.82877433  17.31417201]] 

Residual Variance: 0.313892697582 

Inverse Condition #: 0.146618499389 

Reason(s) for Halting: 

  Sum of squares convergence 
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The functions available in the special package are universal functions, which follow 

broadcasting and automatic array looping.  

Let us look at some of the most frequently used special functions: 

 Cubic Root Function 

 Exponential Function 

 Relative Error Exponential Function 

 Log Sum Exponential Function 

 Lambert Function 

 Permutations and Combinations Function 

 Gamma Function 

Let us now understand each of these functions in brief. 

Cubic Root Function 

The syntax of this cubic root function is – scipy.special.cbrt(x). This will fetch the element-

wise cube root of x. 

Let us consider the following example. 

from scipy.special import cbrt 

res = cbrt([10, 9, 0.1254, 234]) 

print res 

The above program will generate the following output. 

[ 2.15443469  2.08008382  0.50053277  6.16224015] 

Exponential Function 

The syntax of the exponential function is – scipy.special.exp10(x). This will compute 10**x 

element wise. 

Let us consider the following example. 

from scipy.special import exp10 

res = exp10([2, 9]) 

print res 

The above program will generate the following output. 

[  1.00000000e+02   1.00000000e+09] 

17. SciPy – Special Package 
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Relative Error Exponential Function 

The syntax for this function is – scipy.special.exprel(x). It generates the relative error 

exponential, (exp(x) - 1)/x. 

When x is near zero, exp(x) is near 1, so the numerical calculation of exp(x) - 1 can suffer 

from catastrophic loss of precision. Then exprel(x) is implemented to avoid the loss of 

precision, which occurs when x is near zero. 

Let us consider the following example. 

from scipy.special import exprel 

res = exprel([-0.25, -0.1, 0, 0.1, 0.25]) 

print res 

The above program will generate the following output. 

[ 0.88479687  0.95162582  1.          1.05170918  1.13610167] 

Log Sum Exponential Function 

The syntax for this function is – scipy.special.logsumexp(x). It helps to compute the log 

of the sum of exponentials of input elements. 

Let us consider the following example. 

from scipy.special import logsumexp 

import numpy as np 

a = np.arange(10) 

res = logsumexp(a) 

print res 

The above program will generate the following output. 

9.45862974443 

Lambert Function 

The syntax for this function is – scipy.special.lambertw(x). It is also called as the Lambert  

W function. The Lambert W function W(z) is defined as the inverse function of w * exp(w). 

In other words, the value of W(z) is such that z = W(z) * exp(W(z)) for any complex 

number z. 

The Lambert W function is a multivalued function with infinitely many branches. Each 

branch gives a separate solution of the equation z = w exp(w). Here, the branches are 

indexed by the integer k. 
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Let us consider the following example. Here, the Lambert W function is the inverse 

of w exp(w). 

from scipy.special import lambertw 

w = lambertw(1) 

print w 

 

print w * np.exp(w) 

The above program will generate the following output. 

(0.56714329041+0j) 

(1+0j) 

Permutations & Combinations 

Let us discuss permutations and combinations separately for understanding them clearly. 

Combinations: The syntax for combinations function is – scipy.special.comb(N,k). Let us 

consider the following example: 

from scipy.special import comb 

res = comb(10, 3, exact=False,repetition=True) 

print res 

The above program will generate the following output. 

220.0 

Note: Array arguments are accepted only for exact=False case. If k > N, N < 0, or k < 0, 

then a 0 is returned. 

Permutations: The syntax for combinations function is – scipy.special.perm(N,k). 

Permutations of N things taken k at a time, i.e., k-permutations of N. This is also known 

as “partial permutations”. 

Let us consider the following example. 

from scipy.special import perm 

res = perm(10, 3, exact=True) 

print res 

The above program will generate the following output. 

720 
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Gamma Function 

The gamma function is often referred to as the generalized factorial since z*gamma(z) = 

gamma(z+1) and gamma(n+1) = n!, for a natural number ‘n’. 

The syntax for combinations function is – scipy.special.gamma(x). Permutations of N 

things taken k at a time, i.e., k-permutations of N. This is also known as “partial 

permutations”. 

Let us consider the following example. 

from scipy.special import gamma 

res = gamma([0, 0.5, 1, 5]) 

print res 

The above program will generate the following output. 

[         inf   1.77245385   1.          24.        ] 

 

 

 


