

SciPy

i

About the Tutorial

SciPy, a scientific library for Python is an open source, BSD-licensed library for

mathematics, science and engineering. The SciPy library depends on NumPy, which

provides convenient and fast N-dimensional array manipulation. The main reason for

building the SciPy library is that, it should work with NumPy arrays. It provides many

user-friendly and efficient numerical practices such as routines for numerical integration

and optimization.

This is an introductory tutorial, which covers the fundamentals of SciPy and describes how

to deal with its various modules.

Audience

This tutorial is prepared for the readers, who want to learn the basic features along with

the various functions of SciPy. After completing this tutorial, the readers will find

themselves at a moderate level of expertise, from where they can take themselves to

higher levels of expertise.

Prerequisites

Before proceeding with the various concepts given in this tutorial, it is being expected that

the readers have a basic understanding of Python. In addition to this, it will be very helpful,

if the readers have some basic knowledge of other programming languages.

SciPy library depends on the NumPy library, hence learning the basics of NumPy makes

the understanding easy.

Copyright and Disclaimer

 Copyright 2017 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

SciPy

ii

Table of Contents

About the Tutorial ...i
Audience..i
Prerequisites ...i
Copyright and Disclaimer ...i
Table of Contents ... i i

1. SciPy – Introduction...1

2. SciPy – Environment Setup ..3

3. SciPy – Basic Functionality ...4
NumPy Vec tor..4
Intrinsic NumPy Array Creation..4
Matrix..6

4. SciPy – Cluster ...7
K-Means Implementation in SciPy ...7
Compute K-Means with Three Clusters ..8

5. SciPy – Constants... 10
SciPy Constants .. 10
Package .. 10
List of Constants Available ... 10

6. SciPy – Fftpack ... 14
Fast Fourier Transform ... 14
Discrete Cosine Transform ... 15

7. SciPy – Integrate .. 17
Single Integrals ... 18
Multiple Integrals... 18
Double Integrals ... 18

8. SciPy – Interpolate .. 20
What is Interpolation? .. 20
1-D Interpolation.. 21
Splines .. 22

9. SciPy – Input & Output... 25

10. SciPy – Linalg .. 27
Linear Equations... 27
Finding a Determinant .. 28
Eigenvalues and Eigenvectors.. 29
Singular Value Decomposition... 29

11. SciPy – Ndimage .. 31
Opening and Writing to Image Files ... 31
Filters.. 35
Edge Detec tion ... 37

SciPy

iii

12. SciPy – Optimize .. 40
Nelder–Mead Simplex Algorithm.. 40
Least Squares .. 41
Root finding... 42

13. SciPy – Stats.. 44
Normal Continuous Random Variable ... 44
Uniform Distribution ... 45
Descriptive Statistics ... 46
T-test .. 47

14. SciPy – CSGraph ... 49
Graph Representations ... 49
Obtaining a List of Words ... 51

15. SciPy – Spatial .. 54
Delaunay Triangulations ... 54
Coplanar Points .. 55
Convex hulls .. 55

16. SciPy – ODR... 57

17. SciPy – Special Package .. 60

SciPy

1

SciPy, pronounced as Sigh Pi, is a scientific python open source, distributed under the BSD

licensed library to perform Mathematical, Scientific and Engineering Computations.

The SciPy library depends on NumPy, which provides convenient and fast N-dimensional

array manipulation. The SciPy library is built to work with NumPy arrays and provides

many user-friendly and effic ient numerical practices such as routines for numeric al

integration and optimization. Together, they run on all popular operating systems, are

quick to install and are free of charge. NumPy and SciPy are easy to use, but powerful

enough to depend on by some of the world's leading scientists and engineers.

SciPy Sub-packages

SciPy is organized into sub-packages covering different scientific computing domains.

These are summarized in the following table:

scipy.cluster Vector quantization / Kmeans

scipy.constants Physical and mathematical constants

scipy.fftpack Fourier transform

scipy.integrate Integration routines

scipy.interpolate Interpolation

scipy.io Data input and output

scipy.linalg Linear algebra routines

scipy.ndimage n-dimensional image package

scipy.odr Orthogonal distance regression

scipy.optimize Optimization

scipy.signal Signal processing

scipy.sparse Sparse matrices

1.SciPy – Introduction

http://docs.scipy.org/doc/scipy/reference/cluster.html#module-scipy.cluster
http://docs.scipy.org/doc/scipy/reference/constants.html#module-scipy.constants
http://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack
http://docs.scipy.org/doc/scipy/reference/integrate.html#module-scipy.integrate
http://docs.scipy.org/doc/scipy/reference/interpolate.html#module-scipy.interpolate
http://docs.scipy.org/doc/scipy/reference/io.html#module-scipy.io
http://docs.scipy.org/doc/scipy/reference/linalg.html#module-scipy.linalg
http://docs.scipy.org/doc/scipy/reference/ndimage.html#module-scipy.ndimage
http://docs.scipy.org/doc/scipy/reference/odr.html#module-scipy.odr
http://docs.scipy.org/doc/scipy/reference/optimize.html#module-scipy.optimize
http://docs.scipy.org/doc/scipy/reference/signal.html#module-scipy.signal
http://docs.scipy.org/doc/scipy/reference/sparse.html#module-scipy.sparse

SciPy

2

scipy.spatial Spatial data structures and algorithms

scipy.special Any special mathematical functions

scipy.stats Statistics

Data Structure

The basic data structure used by SciPy is a multidimensional array provided by the NumPy

module. NumPy provides some functions for Linear Algebra, Fourier Transforms and

Random Number Generation, but not with the generality of the equivalent functions in

SciPy.

http://docs.scipy.org/doc/scipy/reference/spatial.html#module-scipy.spatial
http://docs.scipy.org/doc/scipy/reference/special.html#module-scipy.special
http://docs.scipy.org/doc/scipy/reference/stats.html#module-scipy.stats

SciPy

3

Standard Python distribution does not come bundled with any SciPy module. A lightweight

alternative is to install SciPy using the popular Python package installer,

pip install pandas

If we install the Anaconda Python package, Pandas will be installed by default. Following

are the packages and links to install them in different operating systems.

Windows

Anaconda (from https://www.continuum.io) is a free Python distribution for the SciPy

stack. It is also available for Linux and Mac.

Canopy (https://www.enthought.com/products/canopy/) is available free, as well as for

commercial distribution with a full SciPy stack for Windows, Linux and Mac.

Python (x,y): It is a free Python distribution with SciPy stack and Spyder IDE for Windows

OS. (Downloadable from http://python-xy.github.io/)

Linux

Package managers of respective Linux distributions are used to install one or more

packages in the SciPy stack.

Ubuntu

We can use the following path to install Python in Ubuntu.

sudo apt-get install python-numpy python-scipy python-
matplotlibipythonipython-notebook python-pandas python-sympy python-nose

Fedora

We can use the following path to install Python in Fedora.

sudo yum install numpyscipy python-matplotlibipython python-pandas sympy
python-nose atlas-devel

2.SciPy – Environment Setup

https://www.continuum.io/
https://www.enthought.com/products/canopy/
http://python-xy.github.io/

SciPy

4

By default, all the NumPy functions have been available through the SciPy namespace.

There is no need to import the NumPy functions explicitly, when SciPy is imported. The

main object of NumPy is the homogeneous multidimensional array. It is a table of elements

(usually numbers), all of the same type, indexed by a tuple of positive integers. In NumPy ,

dimensions are called as axes. The number of axes is called as rank.

Now, let us revise the basic functionality of Vectors and Matrices in NumPy. As SciPy is

built on top of NumPy arrays, understanding of NumPy basics is necessary. As most parts

of linear algebra deals with matrices only.

NumPy Vector

A Vector can be created in multiple ways. Some of them are described below.

Converting Python array-like objects to NumPy

Let us consider the following example.

import numpy as np

list = [1,2,3,4]

arr = np.array(list)

print arr

The output of the above program will be as follows.

[1 2 3 4]

Intrinsic NumPy Array Creation

NumPy has built-in functions for creating arrays from scratch. Some of these functions are

explained below.

Using zeros()

The zeros(shape) function will create an array filled with 0 values with the specified shape.

The default dtype is float64. Let us consider the following example.

import numpy as np

print np.zeros((2, 3))

The output of the above program will be as follows.

array([[0., 0., 0.],

 [0., 0., 0.]])

3.SciPy – Basic Functionality

SciPy

5

Using ones()

The ones(shape) function will create an array filled with 1 values. It is identical to zeros in

all the other respects. Let us consider the following example.

import numpy as np

print np.ones((2, 3))

The output of the above program will be as follows.

array([[1., 1., 1.],

 [1., 1., 1.]])

Using arange()

The arange() function will create arrays with regularly incrementing values. Let us consider

the following example.

import numpy as np

print np.arange(7)

The above program will generate the following output.

array([0, 1, 2, 3, 4, 5, 6])

Defining the data type of the values

Let us consider the following example.

import numpy as np

arr = np.arange(2, 10, dtype=np.float)

print arr

print "Array Data Type :",arr.dtype

The above program will generate the following output.

[2. 3. 4. 5. 6. 7. 8. 9.]

Array Data Type : float64

Using linspace()

The linspace() function will create arrays with a specified number of elements, which will

be spaced equally between the specified beginning and end values. Let us consider the

following example.

import numpy as np

print np.linspace(1., 4., 6)

SciPy

6

The above program will generate the following output.

array([1. , 1.6, 2.2, 2.8, 3.4, 4.])

Matrix

A matrix is a specialized 2-D array that retains its 2-D nature through operations. It has

certain special operators, such as * (matrix multiplication) and ** (matrix power). Let us

consider the following example.

import numpy as np

print np.matrix('1 2; 3 4')

The above program will generate the following output.

matrix([[1, 2],

 [3, 4]])

Conjugate Transpose of Matrix

This feature returns the (complex) conjugate transpose of self. Let us consider the

following example.

import numpy as np

mat = np.matrix('1 2; 3 4')

print mat.H

The above program will generate the following output.

matrix([[1, 3],

 [2, 4]])

Transpose of Matrix

This feature returns the transpose of self. Let us consider the following example.

import numpy as np

mat = np.matrix('1 2; 3 4')

mat.T

The above program will generate the following output.

matrix([[1, 3],

 [2, 4]])

When we transpose a matrix, we make a new matrix whose rows are the columns of the

original. A conjugate transposition, on the other hand, interchanges the row and the

column index for each matrix element. The inverse of a matrix is a matrix that, if multiplied

with the original matrix, results in an identity matrix.

SciPy

7

K-means clustering is a method for finding clusters and cluster centers in a set of

unlabelled data. Intuitively, we might think of a cluster as – comprising of a group of data

points, whose inter-point distances are small compared with the distances to points outside

of the cluster. Given an initial set of K centers, the K-means algorithm iterates the following

two steps:

 For each center, the subset of training points (its cluster) that is closer to it is

identified than any other center.

 The mean of each feature for the data points in each cluster are computed, and

this mean vector becomes the new center for that cluster.

These two steps are iterated until the centers no longer move or the assignments no longer

change. Then, a new point x can be assigned to the cluster of the closest prototype. The

SciPy library provides a good implementation of the K-Means algorithm through the cluster

package. Let us understand how to use it.

K-Means Implementation in SciPy

We will understand how to implement K-Means in SciPy.

Import K-Means

We will see the implementation and usage of each imported function.

from SciPy.cluster.vq import kmeans,vq,whiten

Data generation

We have to simulate some data to explore the clustering.

from numpy import vstack,array

from numpy.random import rand

data generation with three features

data = vstack((rand(100,3) + array([.5,.5,.5]),rand(100,3)))

Now, we have to check for data. The above program will generate the following output.

array([[1.48598868e+00, 8.17445796e-01, 1.00834051e+00],

 [8.45299768e-01, 1.35450732e+00, 8.66323621e-01],

 [1.27725864e+00, 1.00622682e+00, 8.43735610e-01],

 …………….

4.SciPy – Cluster

SciPy

8

Normalize a group of observations on a per feature basis. Before running K-Means, it is

beneficial to rescale each feature dimension of the observation set with whitening. Each

feature is divided by its standard deviation across all observations to give it unit variance.

Whiten the data

We have to use the following code to whiten the data.

whitening of data

data = whiten(data)

Compute K-Means with Three Clusters

Let us now compute K-Means with three clusters using the following code.

computing K-Means with K = 3 (2 clusters)

centroids,_ = kmeans(data,3)

The above code performs K-Means on a set of observation vectors forming K clusters. The

K-Means algorithm adjusts the centroids until sufficient progress cannot be made, i.e. the

change in distortion, since the last iteration is less than some threshold. Here, we can

observe the centroid of the cluster by printing the centroids variable using the code given

below.

print(centroids)

The above code will generate the following output.

print(centroids)

[[2.26034702 1.43924335 1.3697022]

 [2.63788572 2.81446462 2.85163854]

 [0.73507256 1.30801855 1.44477558]]

Assign each value to a cluster by using the code given below.

assign each sample to a cluster

clx,_ = vq(data,centroids)

The vq function compares each observation vector in the ‘M’ by ‘N’ obs array with the

centroids and assigns the observation to the closest cluster. It returns the cluster of each

observation and the distortion. We can check the distortion as well. Let us check the cluster

of each observation using the following code.

check clusters of observation

print clx

SciPy

9

The above code will generate the following output.

array([1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 2, 0,2,
0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1,

0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0,

0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,

0, 0, 1, 0, 0, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 0, 2, 2, 2, 2,

2, 0, 0, 2, 2, 2, 1, 0, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 1,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2,

2, 0, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2], dtype=int32)

The distinct values 0, 1, 2 of the above array indicate the clusters.

SciPy

10

SciPy constants package provides a wide range of constants, which are used in the general

scientific area.

SciPy Constants Package

The scipy.constants package provides various constants. We have to import the

required constant and use them as per the requirement. Let us see how these constant

variables are imported and used.

To start with, let us compare the ‘pi’ value by considering the following example.

#Import pi constant from both the packages

from scipy.constants import pi

from math import pi

print("sciPy - pi = %.16f"%scipy.constants.pi)

print("math - pi = %.16f"%math.pi)

The above program will generate the following output.

sciPy - pi = 3.1415926535897931

math - pi = 3.1415926535897931

List of Constants Available

The following tables describe in brief the various constants.

Mathematical Constants

The following table lists the most commonly used mathematical constants.

Sr.

No.

Constant Description

1 pi pi

2 golden Golden Ratio

5.SciPy – Constants

SciPy

11

Physical Constants

The following table lists the most commonly used physical constants.

Sr.

No.

Constant Description

1 c Speed of light in vacuum

2 speed_of_light Speed of light in vacuum

3 h Planck constant

4 Planck Planck constant h

5 G Newton’s gravitational constant

6 e Elementary charge

7 R Molar gas constant

8 Avogadro Avogadro constant

9 k Boltzmann constant

10 electron_mass(OR) m_e Electronic mass

11 proton_mass (OR) m_p Proton mass

12 neutron_mass(OR)m_n Neutron mass

SciPy

12

Units

The following table has the list of SI units.

Sr.

No.

Unit Value

1 milli 0.001

2 micro 1e-06

3 kilo 1000

These units range from yotta, zetta, exa, peta, tera ……kilo, hector, …nano, pico, … to

zepto.

Other Important Constants

The following table lists other important constants used in SciPy.

Sr.

No.

Unit Value

1 gram 0.001 kg

2 atomic mass Atomic mass constant

3 degree Degree in radians

4 minute One minute in seconds

5 day One day in seconds

6 inch One inch in meters

7 micron One micron in meters

8 light_year One light-year in meters

9 atm Standard atmosphere in pascals

10 acre One acre in square meters

SciPy

13

11 liter One liter in cubic meters

12 gallon One gallon in cubic meters

13 kmh Kilometers per hour in meters per seconds

14 degree_Fahrenheit One Fahrenheit in kelvins

15 eV One electron volt in joules

16 hp One horsepower in watts

17 dyn One dyne in newtons

18 lambda2nu Convert wavelength to optical frequency

Remembering all of these are a bit tough. The easy way to get which key is for which

function is with the scipy.constants.find() method. Let us consider the following

example.

import scipy.constants

res = scipy.constants.physical_constants["alpha particle mass"]

print res

The above program will generate the following output.

['alpha particle mass',

 'alpha particle mass energy equivalent',

 'alpha particle mass energy equivalent in MeV',

 'alpha particle mass in u',

 'electron to alpha particle mass ratio']

This method returns the list of keys, else nothing if the keyword does not match.

SciPy

14

Fourier Transformation is computed on a time domain signal to check its behavior in

the frequency domain. Fourier transformation finds its application in disciplines such as

signal and noise processing, image processing, audio signal processing, etc. SciPy offers

the fftpack module, which lets the user compute fast Fourier transforms.

Following is an example of a sine function, which will be used to calculate Fourier transform

using the fftpack module.

Fast Fourier Transform

Let us understand what fast Fourier transform is in detail.

One Dimensional Discrete Fourier Transform

The FFT y[k] of length N of the length-N sequence x[n] is calculated by fft() and the

inverse transform is calculated using ifft(). Let us consider the following example.

#Importing the fft and inverse fft functions from fftpackage

from scipy.fftpack import fft

#create an array with random n numbers

x = np.array([1.0, 2.0, 1.0, -1.0, 1.5])

#Applying the fft function

y = fft(x)

print y

The above program will generate the following output.

[4.50000000+0.j 2.08155948-1.65109876j -1.83155948+1.60822041j

 -1.83155948-1.60822041j 2.08155948+1.65109876j]

Let us look at another example.

#FFT is already in the workspace, using the same workspace to for inverse
transform

yinv = ifft(y)

print yinv

The above program will generate the following output.

[1.0+0.j 2.0+0.j 1.0+0.j -1.0+0.j 1.5+0.j]

6.SciPy – Fftpack

SciPy

15

The scipy.fftpack module allows computing fast Fourier transforms. As an illustration, a

(noisy) input signal may look as follows:

import numpy as np

time_step = 0.02

period = 5.

time_vec = np.arange(0, 20, time_step)

sig = np.sin(2 * np.pi / period * time_vec) + 0.5
*np.random.randn(time_vec.size)

print sig.size

We are creating a signal with a time step of 0.02 seconds. The last statement prints the

size of the signal sig. The output would be as follows:

1000

We do not know the signal frequency; we only know the sampling time step of the signal

sig. The signal is supposed to come from a real function, so the Fourier transform will be

symmetric. The scipy.fftpack.fftfreq() function will generate the sampling frequencies

and scipy.fftpack.fft() will compute the fast Fourier transform.

Let us understand this with the help of an example.

from scipy import fftpack

sample_freq = fftpack.fftfreq(sig.size, d=time_step)

sig_fft = fftpack.fft(sig)

print sig_fft

The above program will generate the following output.

array([25.45122234 +0.00000000e+00j, 6.29800973 +2.20269471e+00j,

 11.52137858 -2.00515732e+01j, 1.08111300 +1.35488579e+01j,

 …….])

Discrete Cosine Transform

A Discrete Cosine Transform (DCT) expresses a finite sequence of data points in terms

of a sum of cosine functions oscillating at different frequencies. SciPy provides a DCT with

the function dct and a corresponding IDCT with the function idct. Let us consider the

following example.

from scipy.fftpack import dct

print dct(np.array([4., 3., 5., 10., 5., 3.]))

SciPy

16

The above program will generate the following output.

array([60. , -3.48476592, -13.85640646, 11.3137085 ,

 6. , -6.31319305])

The inverse discrete cosine transform reconstructs a sequence from its discrete cosine

transform (DCT) coefficients. The idct function is the inverse of the dct function. Let us

understand this with the following example.

from scipy.fftpack import dct

print idct(np.array([4., 3., 5., 10., 5., 3.]))

The above program will generate the following output.

array([39.15085889, -20.14213562, -6.45392043, 7.13341236,

 8.14213562, -3.83035081])

SciPy

17

When a function cannot be integrated analytically, or is very difficult to integrate

analytically, one generally turns to numerical integration methods. SciPy has a number of

routines for performing numerical integration. Most of them are found in the same

scipy.integrate library. The following table lists some commonly used functions.

Function Description

quad Single integration

dblquad Double integration

tplquad Triple integration

nquad -fold multiple integration

fixed_quad Gaussian quadrature, order n

quadrature Gaussian quadrature to tolerance

romberg Romberg integration

trapz Trapezoidal rule

cumtrapz Trapezoidal rule to cumulatively compute integral

simps Simpson’s rule

romb Romberg integration

polyint Analytical polynomial integration (NumPy)

poly1d Helper function for polyint (NumPy)

7.SciPy – Integrate

SciPy

18

Single Integrals

The Quad function is the workhorse of SciPy’s integration functions. Numerical integration

is sometimes called quadrature, hence the name. It is normally the default choice for

performing single integrals of a function over a given fixed range from to .

The general form of quad is scipy.integrate.quad(f, a, b), Where ‘f’ is the name of the

function to be integrated. Whereas, ‘a’ and ‘b’ are the lower and upper limits, respectively.

Let us see an example of the Gaussian function, integrated over a range of 0 and 1.

We first need to define the function  , this can be done using a lambda

expression and then call the quad method on that function.

import scipy.integrate

from numpy import exp

f= lambda x:exp(-x**2)

i = scipy.integrate.quad(f, 0, 1)

print i

The above program will generate the following output.

(0.7468241328124271, 8.291413475940725e-15)

The quad function returns the two values, in which the first number is the value of integral

and the second value is the estimate of the absolute error in the value of integral.

Note: Since quad requires the function as the first argument, we cannot directly pass exp

as the argument. The Quad function accepts positive and negative infinity as limit s .

The Quad function can integrate standard predefined NumPy functions of a single variable,

such as exp, sin and cos.

Multiple Integrals

The mechanics for double and triple integration have been wrapped up into the

functions dblquad, tplquad and nquad. These functions integrate four or six arguments,

respectively. The limits of all inner integrals need to be defined as functions.

Double Integrals

The general form of dblquad is scipy.integrate.dblquad(func, a, b, gfun, hfun). Where,

func is the name of the function to be integrated, ‘a’ and ‘b’ are the lower and upper limit s

of the x variable, respectively, while gfun and hfun are the names of the functions that

define the lower and upper limits of the y variable.

SciPy

19

As an example, let us perform the double integral method.

We define the functions f, g, and h, using the lambda expressions. Note that even if g

and h are constants, as they may be in many cases, they must be defined as functions,

as we have done here for the lower limit.

import scipy.integrate

from numpy import exp

from math import sqrt

f = lambda x, y : 16*x*y

g = lambda x : 0

h = lambda y : sqrt(1-4*y**2)

i = scipy.integrate.dblquad(f, 0, 0.5, g, h)

print i

The above program will generate the following output.

(0.5, 1.7092350012594845e-14)

In addition to the routines described above, scipy.integrate has a number of other

integration routines, including nquad, which performs -fold multiple integration, as well

as other routines that implement various integration algorithms. However,

quad and dblquad will meet most of our needs for numerical integration.

SciPy

20

In this chapter, we will discuss how interpolation helps in SciPy.

What is Interpolation?

Interpolation is the process of finding a value between two points on a line or a curve. To

help us remember what it means, we should think of the first part of the word, 'inter,' as

meaning 'enter,' which reminds us to look 'inside' the data we originally had. This tool,

interpolation, is not only useful in statistics, but is also useful in science, business, or when

there is a need to predict values that fall within two existing data points.

Let us create some data and see how this interpolat ion can be done using the

scipy.interpolate package.

import numpy as np

from scipy import interpolate

import matplotlib.pyplot as plt

x = np.linspace(0, 4, 12)

y = np.cos(x**2/3+4)

print x,y

The above program will generate the following output.

(array([0. , 0.36363636, 0.72727273, 1.09090909, 1.45454545,

 1.81818182, 2.18181818, 2.54545455, 2.90909091, 3.27272727,

 3.63636364, 4.]),

 array([-0.65364362, -0.61966189, -0.51077021, -0.31047698, -0.00715476,

 0.37976236, 0.76715099, 0.99239518, 0.85886263, 0.27994201,

 -0.52586509, -0.99582185]))

Now, we have two arrays. Assuming those two arrays as the two dimensions of the points

in space, let us plot using the following program and see how they look like.

plt.plot(x, y,’o’)

plt.show()

The above program will generate the following output.

8.SciPy – Interpolate

SciPy

21

1-D Interpolation

The interp1d class in the scipy.interpolate is a convenient method to create a function

based on fixed data points, which can be evaluated anywhere within the domain defined

by the given data using linear interpolation.

By using the above data, let us create a interpolate function and draw a new interpolated

graph.

f1 = interp1d(x, y,kind='linear')

f2 = interp1d(x, y, kind='cubic')

Using the interp1d function, we created two functions f1 and f2. These func tions, for a

given input x returns y. The third variable kind represents the type of the interpolation

technique. 'Linear', 'Nearest', 'Zero', 'Slinear', 'Quadratic', 'Cubic' are a few techniques of

interpolation.

Now, let us create a new input of more length to see the clear difference of interpolation.

We will use the same function of the old data on the new data.

xnew = np.linspace(0, 4,30)

plt.plot(x, y, 'o', xnew, f(xnew), '-', xnew, f2(xnew), '--')

plt.legend(['data', 'linear', 'cubic','nearest'], loc='best')

plt.show()

SciPy

22

The above program will generate the following output.

Splines

To draw smooth curves through data points, drafters once used thin flexible strips of wood,

hard rubber, metal or plastic called mechanical splines. To use a mechanical spline, pins

were placed at a judicious selection of points along a curve in a design, and then the spline

was bent, so that it touched each of these pins.

Clearly, with this construction, the spline interpolates the curve at these pins. It can be

used to reproduce the curve in other drawings. The points where the pins are located is

called knots. We can change the shape of the curve defined by the spline by adjusting the

location of the knots.

Univariate Spline

One-dimensional smoothing spline fits a given set of data points. The UnivariateSpline

class in scipy.interpolate is a convenient method to create a function, based on fixed data

points class – scipy.interpolate.UnivariateSpline(x, y, w=None, bbox=[None, None], k=3,

s=None, ext=0, check_finite=False).

Parameters: Following are the parameters of a Univariate Spline.

 This fits a spline y = spl(x) of degree k to the provided x, y data.

 ‘w’ – Specifies the weights for spline fitting. Must be positive. If none (default),

weights are all equal.

 ‘s’ – Specifies the number of knots by specifying a smoothing condition.

 ‘k’ – Degree of the smoothing spline. Must be <= 5. Default is k=3, a cubic spline.

 Ext – Controls the extrapolation mode for elements not in the interval defined by

the knot sequence.

SciPy

23

o if ext=0 or ‘extrapolate’, returns the extrapolated value.

o if ext=1 or ‘zero’, returns 0

o if ext=2 or ‘raise’, raises a ValueError

o if ext=3 of ‘const’, returns the boundary value.

 check_finite – Whether to check that the input arrays contain only finite numbers.

Let us consider the following example.

import matplotlib.pyplot as plt

from scipy.interpolate import UnivariateSpline

x = np.linspace(-3, 3, 50)

y = np.exp(-x**2) + 0.1 * np.random.randn(50)

plt.plot(x, y, 'ro', ms=5)

plt.show()

Use the default value for the smoothing parameter.

spl = UnivariateSpline(x, y)

xs = np.linspace(-3, 3, 1000)

plt.plot(xs, spl(xs), 'g', lw=3)

plt.show()

SciPy

24

Manually change the amount of smoothing.

spl.set_smoothing_factor(0.5)

plt.plot(xs, spl(xs), 'b', lw=3)

plt.show()

SciPy

25

The Scipy.io (Input and Output) package provides a wide range of functions to work around

with different format of files. Some of these formats are –

 Matlab

 IDL

 Matrix Market

 Wave

 Arff

 Netcdf, etc.

Let us discuss in detail about the most commonly used file formats:

MATLAB

Following are the functions used to load and save a .mat file.

Sr.

No.

Function Description

1 loadmat Loads a MATLAB file

2 savemat Saves a MATLAB file

3 whosmat Lists variables inside a MATLAB file

Let us consider the following example.

import scipy.io as sio

import numpy as np

#Save a mat file

vect = np.arange(10)

sio.savemat('array.mat', {'vect':vect})

#Now Load the File

mat_file_content = sio.loadmat(‘array.mat’)

Print mat_file_content

9.SciPy – Input & Output

SciPy

26

The above program will generate the following output.

{'vect': array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]), '__version__': '1.0',
'__header__': 'MATLAB 5.0 MAT-file Platform: posix, Created on: Sat Sep 30
09:49:32 2017', '__globals__': []}

We can see the array along with the Meta information. If we want to inspect the contents

of a MATLAB file without reading the data into memory, use the whosmat command as

shown below.

import scipy.io as sio

mat_file_content = sio.whosmat(‘array.mat’)

print mat_file_content

The above program will generate the following output.

[('vect', (1, 10), 'int64')]

SciPy

27

SciPy is built using the optimized ATLAS LAPACK and BLAS libraries. It has very fast

linear algebra capabilities. All of these linear algebra routines expect an object that can be

converted into a two-dimensional array. The output of these routines is also a

two-dimensional array.

SciPy.linalg vs NumPy.linalg

A scipy.linalg contains all the functions that are in numpy.linalg. Additionally, scipy.linalg

also has some other advanced functions that are not in numpy.linalg. Another advantage

of using scipy.linalg over numpy.linalg is that it is always compiled with BLAS/LAPACK

support, while for NumPy this is optional. Therefore, the SciPy version might be faster

depending on how NumPy was installed.

Linear Equations

The scipy.linalg.solve feature solves the linear equation a*x + b*y = Z, for the unknown

x, y values.

As an example, assume that it is desired to solve the following simultaneous equations.

x+3y+5z = 10

2x+5y+z = 8

2x+3y+8z = 3

To solve the above equation for the x, y, z values, we can find the solution vector using a

matrix inverse as shown below.

However, it is better to use the linalg.solve command, which can be faster and more

numerically stable.

The solve function takes two inputs ‘a’ and ‘b’ in which ‘a’ represents the coefficients and

‘b’ represents the respective right hand side value and returns the solution array.

Let us consider the following example.

#importing the scipy and numpy packages

from scipy import linalg

import numpy as np

#Declaring the numpy arrays

10. SciPy – Linalg

SciPy

28

a = np.array([[3, 2, 0], [1, -1, 0], [0, 5, 1]])

b = np.array([2, 4, -1])

#Passing the values to the solve function

x = linalg.solve(a, b)

#printing the result array

print x

The above program will generate the following output.

array([2., -2., 9.])

Finding a Determinant

The determinant of a square matrix A is often denoted as |A| and is a quantity often used

in linear algebra. In SciPy, this is computed using the det() function. It takes a matrix as

input and returns a scalar value.

Let us consider the following example.

#importing the scipy and numpy packages

from scipy import linalg

import numpy as np

#Declaring the numpy array

A = np.array([[1,2],[3,4]])

#Passing the values to the det function

x = linalg.det(A)

#printing the result

print x

The above program will generate the following output.

-2.0

SciPy

29

Eigenvalues and Eigenvectors

The eigenvalue-eigenvector problem is one of the most commonly employed linear algebra

operations. We can find the Eigen values (λ) and the corresponding Eigen vectors (v) of a

square matrix (A) by considering the following relation -

Av=λv

scipy.linalg.eig computes the eigenvalues from an ordinary or generalized eigenvalue

problem. This function returns the Eigen values and the Eigen vectors.

Let us consider the following example.

#importing the scipy and numpy packages

from scipy import linalg

import numpy as np

#Declaring the numpy array

A = np.array([[1,2],[3,4]])

#Passing the values to the eig function

l, v = linalg.eig(A)

#printing the result for eigen values

print l

#printing the result for eigen vectors

print v

The above program will generate the following output.

array([-0.37228132+0.j, 5.37228132+0.j]) #--Eigen Values

array([[-0.82456484, -0.41597356], #--Eigen Vectors

 [0.56576746, -0.90937671]])

Singular Value Decomposition

A Singular Value Decomposition (SVD) can be thought of as an extension of the eigenvalue

problem to matrices that are not square.

The scipy.linalg.svd factorizes the matrix ‘a’ into two unitary matrices ‘U’ and ‘Vh’ and a

1-D array ‘s’ of singular values (real, non-negative) such that a == U*S*Vh, where ‘S’ is

a suitably shaped matrix of zeros with the main diagonal ‘s’.

SciPy

30

Let us consider the following example.

#importing the scipy and numpy packages

from scipy import linalg

import numpy as np

#Declaring the numpy array

a = np.random.randn(3, 2) + 1.j*np.random.randn(3, 2)

#Passing the values to the eig function

U, s, Vh = linalg.svd(a)

printing the result

print U, Vh, s

The above program will generate the following output.

(array([[0.54828424-0.23329795j, -0.38465728+0.01566714j,

 -0.18764355+0.67936712j],

 [-0.27123194-0.5327436j , -0.57080163-0.00266155j,

 -0.39868941-0.39729416j],

 [0.34443818+0.4110186j , -0.47972716+0.54390586j,

 0.25028608-0.35186815j]]),

 array([3.25745379, 1.16150607]),

 array([[-0.35312444+0.j , 0.32400401+0.87768134j],

 [-0.93557636+0.j , -0.12229224-0.33127251j]]))

SciPy

31

The SciPy ndimage submodule is dedicated to image processing. Here, ndimage means an

n-dimensional image.

Some of the most common tasks in image processing are as follows:

 Input/Output, displaying images

 Basic manipulations: Cropping, flipping, rotating, etc.

 Image filtering: De-noising, sharpening, etc.

 Image segmentation: Labeling pixels corresponding to different objects

 Classification

 Feature extraction

 Registration

Let us discuss how some of these can be achieved using SciPy.

Opening and Writing to Image Files

The misc package in SciPy comes with some images. We use those images to learn the

image manipulations. Let us consider the following example.

from scipy import misc

f = misc.face()

misc.imsave('face.png', f) # uses the Image module (PIL)

import matplotlib.pyplot as plt

plt.imshow(f)

plt.show()

The above program will generate the following output.

11. SciPy – Ndimage

SciPy

32

Any images in its raw format is the combination of colors represented by the numbers in

the matrix format. A machine understands and manipulates the images based on those

numbers only. RGB is a popular way of representation.

Let us see the statistical information of the above image.

from scipy import misc

face = misc.face(gray=False)

print face.mean(), face.max(), face.min()

The above program will generate the following output.

110.16274388631184, 255, 0

Now, we know that the image is made out of numbers, so any change in the value of the

number alters the original image. Let us perform some geometric transformations on the

image. The basic geometric operation is cropping.

from scipy import misc

face = misc.face(gray=True)

lx, ly = face.shape

Cropping

crop_face = face[lx / 4: - lx / 4, ly / 4: - ly / 4]

SciPy

33

import matplotlib.pyplot as plt

plt.imshow(crop_face)

plt.show()

The above program will generate the following output.

We can also perform some basic operations such as turning the image upside down as

described below.

up <-> down flip

from scipy import misc

face = misc.face()

flip_ud_face = np.flipud(face)

import matplotlib.pyplot as plt

plt.imshow(flip_ud_face)

plt.show()

SciPy

34

The above program will generate the following output.

Besides this, we have the rotate() function, which rotates the image with a specified

angle.

rotation

from scipy import misc,ndimage

face = misc.face()

rotate_face = ndimage.rotate(face, 45)

import matplotlib.pyplot as plt

plt.imshow(rotate_face)

plt.show()

SciPy

35

The above program will generate the following output.

Filters

Let us discuss how filters help in image processing.

What is filtering in image processing?

Filtering is a technique for modifying or enhancing an image. For example, you can filter

an image to emphasize certain features or remove other features. Image processing

operations implemented with filtering include Smoothing, Sharpening, and Edge

Enhancement.

Filtering is a neighborhood operation, in which the value of any given pixel in the output

image is determined by applying some algorithm to the values of the pixels in the

neighborhood of the corresponding input pixel. Let us now perform a few operations using

SciPy ndimage.

SciPy

36

Blurring

Blurring is widely used to reduce the noise in the image. We can perform a filter operation

and see the change in the image. Let us consider the following example.

from scipy import misc

face = misc.face()

blurred_face = ndimage.gaussian_filter(face, sigma=3)

import matplotlib.pyplot as plt

plt.imshow(blurred_face)

plt.show()

The above program will generate the following output.

The sigma value indicates the level of blur on a scale of five. We can see the change on

the image quality by tuning the sigma value. For more details of blurring, click on  DIP

(Digital Image Processing) Tutorial.

https://www.tutorialspoint.com/dip/concept_of_blurring.htm

SciPy

37

Edge Detection

Let us discuss how edge detection helps in image processing.

What is Edge Detection?

Edge detection is an image processing technique for finding the boundaries of objects

within images. It works by detecting discontinuities in brightness. Edge detection is used

for image segmentation and data extraction in areas such as Image Processing, Computer

Vision and Machine Vision.

The most commonly used edge detection algorithms include

 Sobel

 Canny

 Prewitt

 Roberts

 Fuzzy Logic methods

Let us consider the following example.

import scipy.ndimage as nd

import numpy as np

im = np.zeros((256, 256))

im[64:-64, 64:-64] = 1

im[90:-90,90:-90]=2

im = ndimage.gaussian_filter(im, 8)

import matplotlib.pyplot as plt

plt.imshow(im)

plt.show()

The above program will generate the following output.

SciPy

38

The image looks like a square block of colors. Now, we will detect the edges of those

colored blocks. Here, ndimage provides a function called Sobel to carry out this operation.

Whereas, NumPy provides the Hypot function to combine the two resultant matrices to

one.

Let us consider the following example.

import scipy.ndimage as nd

import matplotlib.pyplot as plt

im = np.zeros((256, 256))

im[64:-64, 64:-64] = 1

im[90:-90,90:-90]=2

im = ndimage.gaussian_filter(im, 8)

sx = ndimage.sobel(im, axis=0, mode='constant')

sy = ndimage.sobel(im, axis=1, mode='constant')

sob = np.hypot(sx, sy)

plt.imshow(sob)

SciPy

39

plt.show()

The above program will generate the following output.

SciPy

40

The scipy.optimize package provides several commonly used optimization algorithms.

This module contains the following aspects:

 Unconstrained and constrained minimization of multivariate scalar functions

(minimize()) using a variety of algorithms (e.g. BFGS, Nelder-Mead simplex,

Newton Conjugate Gradient, COBYLA or SLSQP)

 Global (brute-force) optimization routines (e.g., anneal(), basinhopping())

 Least-squares minimization (leastsq()) and curve fitting (curve_fit()) algorithms

 Scalar univariate functions minimizers (minimize_scalar()) and root finders

(newton())

 Multivariate equation system solvers (root()) using a variety of algorithms (e.g.

hybrid Powell, Levenberg-Marquardt or large-scale methods such as Newton-

Krylov)

Unconstrained & Constrained minimization of multivariate scalar functions

The minimize() function provides a common interface to unconstrained and constrained

minimization algorithms for multivariate scalar functions in scipy.optimize. To

demonstrate the minimization function, consider the problem of minimizing the

Rosenbrock function of the NN variables:

f(x) = ∑ 100(xi− xi−1
2)

N−1

i=1

The minimum value of this function is 0, which is achieved when xi=1.

Nelder–Mead Simplex Algorithm

In the following example, the minimize() routine is used with the Nelder-Mead simplex

algorithm (method='Nelder-Mead') (selected through the method parameter). Let us

consider the following example.

import numpy as np

from scipy.optimize import minimize

def rosen(x):

 """The Rosenbrock function"""

 return sum(100.0*(x[1:]-x[:-1]**2.0))

x0 = np.array([1.3, 0.7, 0.8, 1.9, 1.2])

12. SciPy – Optimize

SciPy

41

res = minimize(rosen, x0, method='nelder-mead')

print(res.x)

The above program will generate the following output.

[7.93700741e+54 -5.41692163e+53 6.28769150e+53 1.38050484e+55

 -4.14751333e+54]

The simplex algorithm is probably the simplest way to minimize a fairly well-behaved

function. It requires only function evaluations and is a good choice for simple minimizat ion

problems. However, because it does not use any gradient evaluations, it may take longer

to find the minimum.

Another optimization algorithm that needs only funct ion calls to find the minimum is the

Powell‘s method, which is available by setting method='powell' in the minimize()

function.

Least Squares

Solve a nonlinear least-squares problem with bounds on the variables. Given the residuals

f(x) (an m-dimensional real function of n real variables) and the loss function rho(s) (a

scalar function), least_squares find a local minimum of the cost function F(x). Let us

consider the following example.

In this example, we find a minimum of the Rosenbrock function without bounds on the

independent variables.

#Rosenbrock Function

def fun_rosenbrock(x):

 return np.array([10 * (x[1] - x[0]**2), (1 - x[0])])

from scipy.optimize import least_squares

input = np.array([2, 2])

res = least_squares(fun_rosenbrock, input)

print res

Notice that, we only provide the vector of the residuals. The algorithm constructs the cost

function as a sum of squares of the residuals, which gives the Rosenbrock function. The

exact minimum is at x =[1.0,1.0].

SciPy

42

The above program will generate the following output.

active_mask: array([0., 0.])

 cost: 9.8669242910846867e-30

 fun: array([4.44089210e-15, 1.11022302e-16])

 grad: array([-8.89288649e-14, 4.44089210e-14])

 jac: array([[-20.00000015,10.],[-1.,0.]])

 message: '`gtol` termination condition is satisfied.'

 nfev: 3

 njev: 3

 optimality: 8.8928864934219529e-14

 status: 1

 success: True

 x: array([1., 1.])

Root finding

Let us understand how root finding helps in SciPy.

Scalar functions

If one has a single-variable equation, there are four different root-finding algorithms,

which can be tried. Each of these algorithms require the endpoints of an interval in which

a root is expected (because the function changes signs). In general, brentq is the best

choice, but the other methods may be useful in certain circumstances or for academic

purposes.

Fixed-point solving

A problem closely related to finding the zeros of a function is the problem of finding a fixed

point of a function. A fixed point of a function is the point at which evaluation of the

function returns the point: g(x)=x. Clearly the fixed point of gg is the root of f(x)=g(x)−x.

Equivalently, the root of ff is the fixed_point of g(x)=f(x)+x. The routine fixed_point

provides a simple iterative method using the Aitkens sequence acceleration to estimate

the fixed point of gg, if a starting point is given.

Sets of equations

Finding a root of a set of non-linear equations can be achieved using the root() function.

Several methods are available, amongst which hybr (the default) and lm, respectively

use the hybrid method of Powell and the Levenberg-Marquardt method from the

MINPACK.

The following example considers the single-variable transcendental equation.

x^2+2cos(x)=0

SciPy

43

A root of which can be found as follows:

import numpy as np

from scipy.optimize import root

def func(x):

 return x*2 + 2 * np.cos(x)

sol = root(func, 0.3)

print sol

The above program will generate the following output.

 fjac: array([[-1.]])

 fun: array([2.22044605e-16])

 message: 'The solution converged.'

 nfev: 10

 qtf: array([-2.77644574e-12])

 r: array([-3.34722409])

 status: 1

 success: True

 x: array([-0.73908513])

SciPy

44

All of the statistics functions are located in the sub-package scipy.stats and a fairly

complete listing of these functions can be obtained using info(stats) function. A list of

random variables available can also be obtained from the docstring for the stats

sub-package. This module contains a large number of probability distributions as well as

a growing library of statistical functions.

Each univariate distribution has its own subclass as described in the following table:

Sr.

No.

Class Description

1 rv_continuous A generic continuous random variable class meant for

subclassing

2 rv_discrete A generic discrete random variable class meant for

subclassing

3 rv_histogram Generates a distribution given by a histogram

Normal Continuous Random Variable

A probability distribution in which the random variable X can take any value is continuous

random variable. The location (loc) keyword specifies the mean. The scale (scale) keyword

specifies the standard deviation.

As an instance of the rv_continuous class, norm object inherits from it a collection of

generic methods and completes them with details specific for this particular distribution.

To compute the CDF at a number of points, we can pass a list or a NumPy array. Let us

consider the following example.

from scipy.stats import norm

import numpy as np

print norm.cdf(np.array([1,-1., 0, 1, 3, 4, -2, 6]))

The above program will generate the following output.

array([0.84134475, 0.15865525, 0.5 , 0.84134475, 0.9986501 ,

 0.99996833, 0.02275013, 1.])

13. SciPy – Stats

SciPy

45

To find the median of a distribution, we can use the Percent Point Function (PPF), which is

the inverse of the CDF. Let us understand by using the following example.

from scipy.stats import norm

print norm.ppf(0.5)

The above program will generate the following output.

0.0

To generate a sequence of random variates, we should use the size keyword argument ,

which is shown in the following example.

from scipy.stats import norm

print norm.rvs(size=5)

The above program will generate the following output.

array([0.20929928, -1.91049255, 0.41264672, -0.7135557 , -0.03833048])

The above output is not reproducible. To generate the same random numbers, use the

seed function.

Uniform Distribution

A uniform distribution can be generated using the uniform function. Let us consider the

following example.

from scipy.stats import uniform

print uniform.cdf([0, 1, 2, 3, 4, 5], loc = 1, scale = 4)

The above program will generate the following output.

array([0. , 0. , 0.25, 0.5 , 0.75, 1.])

Build Discrete Distribution

Let us generate a random sample and compare the observed frequencies with the

probabilities.

Binomial Distribution

As an instance of the rv_discrete class, the binom object inherits from it a collection

of generic methods and completes them with details specific for this particular distribution.

Let us consider the following example.

from scipy.stats import uniform

print uniform.cdf([0, 1, 2, 3, 4, 5], loc = 1, scale = 4)

SciPy

46

The above program will generate the following output.

array([0. , 0. , 0.25, 0.5 , 0.75, 1.])

Descriptive Statistics

The basic stats such as Min, Max, Mean and Variance takes the NumPy array as input and

returns the respective results. A few basic statistical functions available in the scipy.stats

package are described in the following table.

Sr.

No.
Function Description

1 describe()
Computes several descriptive statistics of the passed

array

2 gmean() Computes geometric mean along the specified axis

3 hmean() Calculates the harmonic mean along the specified axis

4 kurtosis() Computes the kurtosis

5 mode() Returns the modal value

6 skew() Tests the skewness of the data

7 f_oneway() Performs a 1-way ANOVA

8 iqr()
Computes the interquartile range of the data along the

specified axis

9 zscore()
Calculates the z score of each value in the sample,

relative to the sample mean and standard deviation

10 sem()
Calculates the standard error of the mean (or standard

error of measurement) of the values in the input array

SciPy

47

Several of these functions have a similar version in the scipy.stats.mstats, which work

for masked arrays. Let us understand this with the example given below.

from scipy import stats

import numpy as np

x = np.array([1,2,3,4,5,6,7,8,9])

print x.max(),x.min(),x.mean(),x.var()

The above program will generate the following output.

(9, 1, 5.0, 6.666666666666667)

T-test

Let us understand how T-test is useful in SciPy.

ttest_1samp

Calculates the T-test for the mean of ONE group of scores. This is a two-sided test for the

null hypothesis that the expected value (mean) of a sample of independent

observations ‘a’ is equal to the given population mean, popmean. Let us consider the

following example.

from scipy import stats

rvs = stats.norm.rvs(loc=5, scale=10, size=(50,2))

print stats.ttest_1samp(rvs,5.0)

The above program will generate the following output.

Ttest_1sampResult(statistic=array([-1.40184894, 2.70158009]),

pvalue=array([0.16726344, 0.00945234]))

Comparing two samples

In the following examples, there are two samples, which can come either from the same

or from different distribution, and we want to test whether these samples have the same

statistical properties.

ttest_ind: Calculates the T-test for the means of two independent samples of scores. This

is a two-sided test for the null hypothesis that two independent samples have identical

average (expected) values. This test assumes that the populations have identical variances

by default.

SciPy

48

We can use this test, if we observe two independent samples from the same or different

population. Let us consider the following example.

from scipy import stats

rvs1 = stats.norm.rvs(loc=5,scale=10,size=500)

rvs2 = stats.norm.rvs(loc=5,scale=10,size=500)

print stats.ttest_ind(rvs1,rvs2)

The above program will generate the following output.

Ttest_indResult(statistic=-0.67406312233650278, pvalue=0.50042727502272966)

You can test the same with a new array of the same length, but with a varied mean. Use

a different value in loc and test the same.

SciPy

49

CSGraph stands for Compressed Sparse Graph, which focuses on Fast graph algorithms

based on sparse matrix representations.

Graph Representations

To begin with, let us understand what a sparse graph is and how it helps in graph

representations.

What exactly is a sparse graph?

A graph is just a collection of nodes, which have links between them. Graphs can represent

nearly anything: social network connections, where each node is a person and is connected

to acquaintances; images, where each node is a pixel and is connected to neighboring

pixels; points in a high-dimensional distribution, where each node is connected to its

nearest neighbors; and practically anything else you can imagine.

One very efficient way to represent graph data is in a sparse matrix: let us call it G. The

matrix G is of size N x N, and G[i, j] gives the value of the connection between node ‘i' and

node ‘j’. A sparse graph contains mostly zeros: that is, most nodes have only a few

connections. This property turns out to be true in most cases of interest.

The creation of the sparse graph submodule was motivated by several algorithms used in

scikit-learn that included the following:

 Isomap: A manifold learning algorithm, which requires finding the shortest paths

in a graph.

 Hierarchical clustering: A clustering algorithm based on a minimum spanning

tree.

 Spectral Decomposition: A projection algorithm based on sparse graph

laplacians.

As a concrete example, imagine that we would like to represent the following undirected

graph:

14. SciPy – CSGraph

SciPy

50

This graph has three nodes, where node 0 and 1 are connected by an edge of weight 2,

and nodes 0 and 2 are connected by an edge of weight 1. We can construct the dense,

masked and sparse representations as shown in the following example, keeping in mind

that an undirected graph is represented by a symmetric matrix.

G_dense = np.array([[0, 2, 1],

 [2, 0, 0],

 [1, 0, 0]])

G_masked = np.ma.masked_values(G_dense, 0)

from scipy.sparse import csr_matrix

G_sparse = csr_matrix(G_dense)

print G_sparse.data

The above program will generate the following output.

array([2, 1, 2, 1])

This is identical to the previous graph, except nodes 0 and 2 are connected by an edge of

zero weight. In this case, the dense representation above leads to ambiguities: how can

non-edges be represented, if zero is a meaningful value. In this case, either a masked or

a sparse representation must be used to eliminate the ambiguity.

Let us consider the following example.

from scipy.sparse.csgraph import csgraph_from_dense

G2_data = np.array([[np.inf, 2, 0],

 [2, np.inf, np.inf],

 [0, np.inf, np.inf]])

G2_sparse = csgraph_from_dense(G2_data, null_value=np.inf)

print G2_sparse.data

SciPy

51

The above program will generate the following output.

array([2., 0., 2., 0.])

Word ladders using sparse graphs

Word ladders is a game invented by Lewis Carroll, in which words are linked by changing

a single letter at each step. For example:

APE -> APT -> AIT -> BIT -> BIG -> BAG -> MAG -> MAN

Here, we have gone from "APE" to "MAN" in seven steps, changing one letter each time.

The question is - Can we find a shorter path between these words using the same rule ?

This problem is naturally expressed as a sparse graph problem. The nodes will correspond

to individual words, and we will create connections between words that differ by at the

most – one letter.

Obtaining a List of Words

First, of course, we must obtain a list of valid words. I am running Mac, and Mac has a

word dictionary at the location given in the following code block. If you are on a different

architecture, you may have to search a bit to find your system dictionary.

wordlist = open('/usr/share/dict/words').read().split()

print len(wordlist)

The above program will generate the following output.

235886

We now want to look at words of length 3, so let us select just those words of the correct

length. We will also eliminate words, which start with upper case (proper nouns) or contain

non-alpha-numeric characters such as apostrophes and hyphens. Finally, we will make

sure everything is in lower case for a comparison later on.

word_list = [word for word in word_list if len(word) == 3]

word_list = [word for word in word_list if word[0].islower()]

word_list = [word for word in word_list if word.isalpha()]

word_list = map(str.lower, word_list)

print len(word_list)

The above program will generate the following output.

1135

SciPy

52

Now, we have a list of 1135 valid three-letter words (the exact number may change

depending on the particular list used). Each of these words will become a node in our

graph, and we will create edges connecting the nodes associated with each pair of words,

which differs by only one letter.

import numpy as np

word_list = np.asarray(word_list)

word_list.dtype

word_list.sort()

word_bytes = np.ndarray((word_list.size, word_list.itemsize),

 dtype='int8',

 buffer=word_list.data)

print word_bytes.shape

The above program will generate the following output.

(1135, 3)

We will use the Hamming distance between each point to determine, which pairs of words

are connected. The Hamming distance measures the fraction of entries between two

vectors, which differ: any two words with a hamming distance equal to 1/N1/N,

where NN is the number of letters, which are connected in the word ladder.

from scipy.spatial.distance import pdist, squareform

from scipy.sparse import csr_matrix

hamming_dist = pdist(word_bytes, metric='hamming')

graph = csr_matrix(squareform(hamming_dist < 1.5 / word_list.itemsize))

When comparing the distances, we do not use equality because this can be unstable for

floating point values. The inequality produces the desired result as long as no two entries

of the word list are identical. Now, that our graph is set up, we will use the shortest path

search to find the path between any two words in the graph.

i1 = word_list.searchsorted('ape')

i2 = word_list.searchsorted('man')

print word_list[i1],word_list[i2]

The above program will generate the following output.

ape, man

SciPy

53

We need to check that these match, because if the words are not in the list there will be

an error in the output. Now, all we need is to find the shortest path between these two

indices in the graph. We will use dijkstra’s algorithm, because it allows us to find the path

for just one node.

from scipy.sparse.csgraph import dijkstra

distances, predecessors = dijkstra(graph, indices=i1,
return_predecessors=True)

print distances[i2]

The above program will generate the following output.

5.0

Thus, we see that the shortest path between ‘ape’ and ‘man’ contains only five steps. We

can use the predecessors returned by the algorithm to reconstruct this path.

path = []

i = i2

while i != i1:

 path.append(word_list[i])

 i = predecessors[i]

path.append(word_list[i1])

print path[::-1]i2]

The above program will generate the following output.

['ape', 'ope', 'opt', 'oat', 'mat', 'man']

SciPy

54

The scipy.spatial package can compute Triangulations, Voronoi Diagrams and Convex

Hulls of a set of points, by leveraging the Qhull library. Moreover, it contains KDTree

implementations for nearest-neighbor point queries and utilities for distance

computations in various metrics.

Delaunay Triangulations

Let us understand what Delaunay Triangulations are and how they are used in SciPy.

What are Delaunay Triangulations?

In mathematics and computational geometry, a Delaunay triangulation for a given set P

of discrete points in a plane is a triangulation DT(P) such that no point in P is inside the

circumcircle of any triangle in DT(P).

We can the compute the same through SciPy. Let us consider the following example.

from scipy.spatial import Delaunay

points = np.array([[0, 4], [2, 1.1], [1, 3], [1, 2]])

tri = Delaunay(points)

import matplotlib.pyplot as plt

plt.triplot(points[:,0], points[:,1], tri.simplices.copy())

plt.plot(points[:,0], points[:,1], 'o')

plt.show()

The above program will generate the following output.

15. SciPy – Spatial

SciPy

55

Coplanar Points

Let us understand what Coplanar Points are and how they are used in SciPy.

What are Coplanar Points?

Coplanar points are three or more points that lie in the same plane. Recall that a plane is

a flat surface, which extends without end in all directions. It is usually shown in math

textbooks as a four-sided figure.

Let us see how we can find this using SciPy. Let us consider the following example.

from scipy.spatial import Delaunay

points = np.array([[0, 0], [0, 1], [1, 0], [1, 1], [1, 1]])

tri = Delaunay(points)

print tri.coplanar

The above program will generate the following output.

array([[4, 0, 3]], dtype=int32)

This means that point 4 resides near triangle 0 and vertex 3, but is not included in the

triangulation.

Convex hulls

Let us understand what convex hulls are and how they are used in SciPy.

What are Convex Hulls?

In mathematics, the convex hull or convex envelope of a set of points X in the

Euclidean plane or in a Euclidean space (or, more generally, in an affine space over the

reals) is the smallest convex set that contains X.

Let us consider the following example to understand it in detail.

from scipy.spatial import ConvexHull

points = np.random.rand(10, 2) # 30 random points in 2-D

hull = ConvexHull(points)

import matplotlib.pyplot as plt

plt.plot(points[:,0], points[:,1], 'o')

for simplex in hull.simplices:

 plt.plot(points[simplex,0], points[simplex,1], 'k-')

plt.show()

SciPy

56

The above program will generate the following output.

SciPy

57

ODR stands for Orthogonal Distance Regression, which is used in the regression

studies. Basic linear regression is often used to estimate the relationship between the two

variables y and x by drawing the line of best fit on the graph.

The mathematical method that is used for this is known as Least Squares, and aims

to minimize the sum of the squared error for each point. The key question here is how do

you calculate the error (also known as the residual) for each point?

In a standard linear regression, the aim is to predict the Y value from the X value – so the

sensible thing to do is to calculate the error in the Y values (shown as the gray lines in the

following image). However, sometimes it is more sensible to take into account the error

in both X and Y (as shown by the dotted red lines in the following image).

For example: When you know your measurements of X are uncertain, or when you do not

want to focus on the errors of one variable over another.

Orthogonal Distance Regression (ODR) is a method that can do this (orthogonal in this

context means perpendicular – so it calculates errors perpendicular to the line, rather than

just ‘vertically’).

16. SciPy – ODR

SciPy

58

scipy.odr Implementation for Univariate Regression

The following example demonstrates scipy.odr implementation for univariate regression.

import numpy as np

import matplotlib.pyplot as plt

from scipy.odr import *

import random

Initiate some data, giving some randomness using random.random().

x = np.array([0, 1, 2, 3, 4, 5])

y = np.array([i**2 + random.random() for i in x])

Define a function (quadratic in our case) to fit the data with.

def linear_func(p, x):

 m, c = p

 return m*x + c

Create a model for fitting.

linear_model = Model(linear_func)

Create a RealData object using our initiated data from above.

data = RealData(x, y)

Set up ODR with the model and data.

odr = ODR(data, linear_model, beta0=[0., 1.])

Run the regression.

out = odr.run()

Use the in-built pprint method to give us results.

out.pprint()

SciPy

59

The above program will generate the following output.

Beta: [5.51846098 -4.25744878]

Beta Std Error: [0.7786442 2.33126407]

Beta Covariance: [[1.93150969 -4.82877433]

 [-4.82877433 17.31417201]]

Residual Variance: 0.313892697582

Inverse Condition #: 0.146618499389

Reason(s) for Halting:

 Sum of squares convergence

SciPy

60

The functions available in the special package are universal functions, which follow

broadcasting and automatic array looping.

Let us look at some of the most frequently used special functions:

 Cubic Root Function

 Exponential Function

 Relative Error Exponential Function

 Log Sum Exponential Function

 Lambert Function

 Permutations and Combinations Function

 Gamma Function

Let us now understand each of these functions in brief.

Cubic Root Function

The syntax of this cubic root function is – scipy.special.cbrt(x). This will fetch the element-

wise cube root of x.

Let us consider the following example.

from scipy.special import cbrt

res = cbrt([10, 9, 0.1254, 234])

print res

The above program will generate the following output.

[2.15443469 2.08008382 0.50053277 6.16224015]

Exponential Function

The syntax of the exponential function is – scipy.special.exp10(x). This will compute 10**x

element wise.

Let us consider the following example.

from scipy.special import exp10

res = exp10([2, 9])

print res

The above program will generate the following output.

[1.00000000e+02 1.00000000e+09]

17. SciPy – Special Package

SciPy

61

Relative Error Exponential Function

The syntax for this function is – scipy.special.exprel(x). It generates the relative error

exponential, (exp(x) - 1)/x.

When x is near zero, exp(x) is near 1, so the numerical calculation of exp(x) - 1 can suffer

from catastrophic loss of precision. Then exprel(x) is implemented to avoid the loss of

precision, which occurs when x is near zero.

Let us consider the following example.

from scipy.special import exprel

res = exprel([-0.25, -0.1, 0, 0.1, 0.25])

print res

The above program will generate the following output.

[0.88479687 0.95162582 1. 1.05170918 1.13610167]

Log Sum Exponential Function

The syntax for this function is – scipy.special.logsumexp(x). It helps to compute the log

of the sum of exponentials of input elements.

Let us consider the following example.

from scipy.special import logsumexp

import numpy as np

a = np.arange(10)

res = logsumexp(a)

print res

The above program will generate the following output.

9.45862974443

Lambert Function

The syntax for this function is – scipy.special.lambertw(x). It is also called as the Lambert

W function. The Lambert W function W(z) is defined as the inverse function of w * exp(w).

In other words, the value of W(z) is such that z = W(z) * exp(W(z)) for any complex

number z.

The Lambert W function is a multivalued function with infinitely many branches. Each

branch gives a separate solution of the equation z = w exp(w). Here, the branches are

indexed by the integer k.

SciPy

62

Let us consider the following example. Here, the Lambert W function is the inverse

of w exp(w).

from scipy.special import lambertw

w = lambertw(1)

print w

print w * np.exp(w)

The above program will generate the following output.

(0.56714329041+0j)

(1+0j)

Permutations & Combinations

Let us discuss permutations and combinations separately for understanding them clearly.

Combinations: The syntax for combinations function is – scipy.special.comb(N,k). Let us

consider the following example:

from scipy.special import comb

res = comb(10, 3, exact=False,repetition=True)

print res

The above program will generate the following output.

220.0

Note: Array arguments are accepted only for exact=False case. If k > N, N < 0, or k < 0,

then a 0 is returned.

Permutations: The syntax for combinations function is – scipy.special.perm(N,k).

Permutations of N things taken k at a time, i.e., k-permutations of N. This is also known

as “partial permutations”.

Let us consider the following example.

from scipy.special import perm

res = perm(10, 3, exact=True)

print res

The above program will generate the following output.

720

SciPy

63

Gamma Function

The gamma function is often referred to as the generalized factorial since z*gamma(z) =

gamma(z+1) and gamma(n+1) = n!, for a natural number ‘n’.

The syntax for combinations function is – scipy.special.gamma(x). Permutations of N

things taken k at a time, i.e., k-permutations of N. This is also known as “partial

permutations”.

Let us consider the following example.

from scipy.special import gamma

res = gamma([0, 0.5, 1, 5])

print res

The above program will generate the following output.

[inf 1.77245385 1. 24.]

